

目次

序文	1
MAKO TKA 手術の概要	3
ツールとアクセサリ	4
手術の設定1	0
患者の位置決め1	3
ロボットアームへの MICS ハンドピースの接続1	4
MICS ハンドピースへの MICS アタッチメント装着1	6
MICS アタッチメントへのソーブレード装着1	7
MAKO(MAKOplasty) TKA アプリケーションソフトウェアの概要 1	8
患者計画を作成して開く(ガイダンスモジュールまたは MPS ラップトップ)3	31
治療計画立案	13
MAKO TKA ワークフロー	52
ロボットアームの術前チェック	53
骨位置合わせ	'1
術中計画立案	'9
骨の調製	4
)4

序文

ユーザーマニュアル利用規約

本マニュアルは MAKO Surgical Corp. (Stryker)が提供し、情報取得目的でのみ使用されるべきものです。Mako システムの使用に関する諸条件は、システムユーザーとの配置契約で確認できます。

本マニュアルに関して

本マニュアルには、Mako システムを使用した Mako (MAKOplasty) TKA アプリケーション処置を臨床 で実行する際の指示書の原文が記載されています。

製造者サポート / ご意見

▲ MAKO Surgical Corp. 3365 Enterprise Ave. Weston, FL 33331 USA カスタマーサービス +1 (855) 303-6256 www.stryker.com

医療と製品情報

本マニュアルは情報提供のみで、医療アドバイスや医療アドバイスに代わるものとしての目的はあり ません。整形外科分野の医療機器の製造者として、Stryker 社は医業を営まず、また、本マニュアル内 で参照される、または述べられている外科技術、あるいは、特定の患者に使用される他の外科技術を 推奨することもありません。患者個人に使用されるべき適切な外科技術の選択に対して、Stryker は責 任を負いません。

特許権

照会先:米国特許 <u>http://patents.makosurgical.com/15</u>

使用上の注意

Mako システムは、整形外科処置の間に、解剖学的構造に対して方向付けや参照情報についてのソフト ウェア定義の空間的境界を与えることで、外科医を支援することを目的としています。

Mako システムは、定位手術の適用が妥当であり、剛性の解剖学的骨構造との関連が、生体構造モデル に基づく CT と比較して特定できる、膝関節の外科処置での使用が示されています。これらの処置に は以下が含まれます。

• 人工膝関節全置換術 (TKA)。

システムに適合するインプラントシステム:

- トライアスロン人工膝関節システム(CR/CS/PS/PSR、プライマリーセメンテッドおよびセメントレス)
- トライアスロン人工膝関節システム(TS インサート、プライマリーセメンテッド)
- KINETIS 人工膝関節システム(CR/UC)

著作権と商標権

このマニュアルの内容は適用著作権法と商標権法に基づいて保護されています。読者は、Stryker 社の 事前承認を得ることなく本マニュアル内のいかなる内容も、複製、配布、再発行、掲示、投稿、伝送、 または変更しないことに同意するものとします。本マニュアルに掲載される全ての画像の所有権はそ れぞれの著作権の所有者にあります。本マニュアルに掲載される全ての画像の、いかなる模造、複製、 修正、配布も禁止されています。本マニュアルに掲載される第三者の商標はそれぞれの所有者に独占 所有権があります。これらの会社、また彼らの代理人は、Stryker がこれら商標を使用することを承諾 しています。

CE マークのステータスと合法的製造業者については、製品ラベルを参照してください。CE マーク は、製品ラベルに記載されている場合に限り有効です。

準拠法

本マニュアル、またはその中に含まれる情報に関するあらゆる法的行為や訴訟は、独占的にニュー ジャージー州バーゲン郡の法廷でのみ提起され、法の抵触に関する原則は考慮せず、ニュージャー ジー州法に準拠するものとします。

ソフトウェアバージョン TKA 1.0

Mako システムには、ユーザーが修理可能な部品はありません。Stryker の許可を得たサービス担当 職員にお問合せください。

重大なインシデントが発生した場合、製造業者およびご使用になる地域の所轄官庁に通知してくだ さい。

MAKO TKA 手術の概要

Mako 製品専門医 (MPS) が加わった標準的な OR チーム (外科医、医師助手、外科技術士、手術 室看護師) が、本セクションに記載するワークフローを実施することができます。

Mako (MAKOplasty) TKA アプリケーションソフトウェアは、手術担当外科医の指示のもと、MPS がガイダンスモジュールから操作するように設計されています。

術前

- 患者を選択します。
- 器具類の洗浄滅菌を完了します。
- Mako Knee CT スキャンプロトコル (PN 200004-09)を使用して、患者の CT スキャンを収集します。
- Mako セグメンテーション専門医または Mako 製品専門医(MPS)が患者の CT データセグメン テーションを行い、患者の骨モデルを作成します。
- セグメンテーション専門医または Mako 製品専門医(MPS)が選択したインプラントシステムに対する患者特有の手術計画を作成し、外科医と MPS が見直します。

術中

- Mako 上の Mako (MAKOplasty) TKA アプリケーションソフトウェアに手術計画を読み込みます。
- 患者を所定位置に配置します
- Mako システムを配置し、術中の至適性能を期して設定を行います。
- 患者の生体構造とロボットアームの位置をアプリケーションソフトウェア内で合わせます。
- 術中植込み計画立案は MPS と外科医が協力して行い、外科医の最終承認を受けます。
- ロボットアームと骨の位置合わせの正確性をチェックします。
- インプラント手術計画に従って骨を切除します。
- トライアルを留置し、アライメント、安定性、および可動域を評価します。
- 最終インプラントを設置します。

術後

- Mako TKA システム装置と器具の洗浄を実施します。
- 計画されたシステムの維持管理を完了します。

ツールとアクセサリ

器具の識別

すべての Stryker 手術機器、器具類にはラベルが添付されて届けられます。部品は、梱包ラベル上の部 品番号、および部品に刻まれた部品番号、またはどちらか一方により識別できます。滅菌部品は、滅 菌の記号STERLEで識別可能です(例として、骨ピン、チェックポイント、カッティングツール、 VIZADISC などが含まれます)。

ツールとアクセサリは、有資格外科医か、この指針を読み理解している医師の有資格スタッフに よってのみ、または、彼らの指導のもとでのみ操作してください。補充のサポート担当者も、全員 が訓練を受け、この指針を読み理解していなければなりません。

無菌包装に損傷がある場合は、必ず MAKO Surgical Corp. に送り返してください。無菌状態で届く 製品は1回限りの使用で、決して再滅菌処理をしないでください。

ほどんどの、Mako TKA ツールとアクセサリは、未滅菌で搬送されますので、必ず使用前に滅菌し てください。滅菌手順の詳細に関しては、「Mako 器具の洗浄滅菌ガイド (PN 700001056525-09)」 を参照してください。

上記で、また本書を通して使用される警告記号は、Mako と Mako (MAKOplasty) TKA ソフトウェア の安全な操作に関する情報を提供することを目的としています。上記、また本書を通した警告記号ま たはピン記号の使用は、特筆すべき情報を強調表示することを目的としています。

標準の Mako TKA 器具

下表には、Mako TKA 手術を支援するために必要な器具トレイに収納されている個々の器具の詳細が 示されています。

- Mako 膝関節アレイ / バランシングキットには、必要な器具類、トラッキングアレイ、膝関節テンショナーが含まれています。
- Mako 動力システムおよびアタッチメントキット(カッティングシステム)には、MICS ハンド ピースとアクセサリが含まれています。

ツール	概要	画像
膝関節大腿骨アレイ	大腿骨の位置と向きをトラッキングするために使 用します。アレイアダプターに取り付け、骨クラ ンプや骨ピンと一緒に使用して大腿骨を確実に固 定します。アレイには4つの VIZADISC 用ポス トが付いています。	
膝関節脛骨アレイ	脛骨の位置と向きをトラッキングするために使用 します。アレイアダプターに取り付け、骨クラン プや骨ピンと一緒に使用して脛骨を確実に固定し ます。アレイには4つの VIZADISC 用ポストが 付いています。	

表1 標準 TKA アプリケーションツール

ツール	概要	画像
ロボットアームベースア レイ	Mako のトラッカーアームに取り付けます。ロ ボットアームのトラッキングに使用します(4 つ の VIZADISC 用ポストが付いています)。	
膝関節のエンド・エフェ クタ・アレイ	「RIO Registration,(RIO 位置合わせ)」、探針 チェック、プラナ探針の評価に使用します(4 つ の VIZADISC 用ポストが付いています)。	
ブラント探針	ランドマークを収集し、骨のチェックポイントや ソー・ブレード・チェックポイントを収集 / 検証 するブラント先端探針(緑色のハンドル)。探針 には 3 つの VIZADISC 用ポストが付いていま す。	
シャープ探針	骨位置合わせポイントを収集するシャープな先端 の探針(青色のハンドル)(3 つの VIZADISC 用 ポストが付いています)。	
アレイスタビライザー (3.2 または 4.0 ロング)	大腿骨骨ピン挿入のガイドとして使用します。手 術の間に定位置を維持し、大腿骨アレイアセンブ リを安定させます。3.2 mm および 4.0 mm 径の 骨ピンに使用できます。	A REAL PROVIDENCE OF A REAL PR
アレイスタビライザー (3.2 または 4.0 ショート)	脛骨骨ピン挿入のガイドとして使用します。手術 の間定位置を維持し、脛骨アレイアセンブリを安 定させます。3.2 mm および 4.0 mm 径の骨ピン に使用できます。	Anarco -
骨盤アレイアダプター	脛骨と大腿骨の骨アレイおよび 2 ピンクランプに 取り付けます。	Contraction of the second seco

表1 標準 TKA アプリケーションツール (続き)

ツール	概要	画像
2 ピンクランプ	骨ピンに留め、骨盤アレイアダプターや骨アレイ と組み合わせて使用します。	
位置合わせツール	MICS ハンドピースに取り付けてロボットアーム の RIO 位置合わせに使用します。	
膝関節チェックポイント ドライバー	チェックポイントを骨に挿入したり、取り外した りする際に使用します。	S. Land March
四角ドリルアダプター	サージカルドリルが Stryker 4.0 mm 骨ピンを動か せるようにします。	C - Bala
四角ドライバー	MICS ハンドピース、2 ピンクランプ、骨盤アレ イアダプター、および骨アレイの四角止めねじを 締めたり / 緩めたりするのに使用します。	AT 23 0
プラナ探針	骨切除深度と角度の誤差測定に使用します。	State Stat
膝関節テンショナー	遠位大腿骨および近位脛骨切除後の内顆および外 顆に等しい張力を掛けるために使用します。	
スペーサーシム(5 mm)	膝関節テンショナーに取り付け、必要に応じて伸 延スペースを拡大します。	At the string

ツール	概要	画像
脊椎用スプレッダー	関節の伸延を行う膝テンショナーと併用するか、 単独で用いるカ目盛付き強制ベースのスプレッ ダー。	Ø
スペーサブロック (16/18 mm および 20/22 mm)	切除した骨によってトライアルやインプラントの ための正しい空間が与えられるかどうかの決定に 使用するオプションのツール。伸展間隙および屈 曲間隙のバランスや内顆と外顆のバランスの評価 にも使用します。	Contraction of the second s
スペーサーパドル (サイズ 1 mm x 2 mm、 3 mm x 4 mm、5 mm x 6 mm)	「Ligament Balancing (靱帯バランシング)」ペー ジ(切除前のバランシングワークフロー)で、 個々の顆に適正な靱帯張力を適用するために使用 するオプションツール。	2
RESTORIS 脛骨アンレー セメント除去ツール	植込み中に過剰なセメントを除去するツール。	
MICS ハンドピース	ロボットアーム、サジタル・ソー・アタッチメン ト、および直角ソーアタッチメントに装着する切 除システム。	
サジタル・ソー・アタッ チメント	MICS ハンドピースやソーブレードに接続しま す。大腿骨前方、大腿骨前方面取り部、大腿骨後 方および近位脛骨の骨面切除に使用します。	
直角ソーアタッチメント	MICS ハンドピースやソーブレードに接続しま す。大腿骨遠位や大腿骨後方面取り部の骨面切除 に使用します。	

表1	<i>標準</i> TKA	アプリケ-	ーションツール	・ (続き)
----	---------------	-------	---------	--------

表1 標準 TKA アプリケーションツール (続き)

ツール	概要	画像
MICS 取り付けレンチ	ソーブレードを取り外す際のストレートおよび斜 めソー・アタッチメント・ノブを緩めるために使 用します。	210223

損傷を防止するため、洗浄滅菌のためにトレイを送る前に、常に器具の適切な配置確保を徹底しま す。洗浄と滅菌手順については、「Mako 器具の洗浄滅菌ガイド (PN 700001056525-09)」を参照し てください。

使い捨て器具

以下の品目は、使い捨て器具に指定され、単回 Mako TKA 手術で利用する必要のある品目を示しています。

部品名	概要
Mako ドレープキット	ロボットアームを滅菌バリアで覆うために使用されます。
Mako ブレード (標準、ナロー)	ソーブレードは、標準およびナロー幅で使用することができます。使用 するブレード幅は、計画したインプラントコンポーネントのサイズに よって異なります。
VIZADISC 膝関節処置トラッキング キット	アレイと探針に取り付け、器具のトラッキング用に使用します。
膝部大腿骨 / 膝部脛骨チェックポイ ント	骨位置合わせを検証するために大腿骨や脛骨に取り付けられます。
骨ピン (3.2 mm、4.0 mm)	骨アレイアセンブリを固定するために大腿骨や脛骨に埋め込みます。
レッグ・ポジショナー・ディスポー ザブル・キット	患者の下肢下部をレッグポジショナーのブーツに固定するために、発泡 体パッドや Coban を使用します。自己保持開創器を固定するために開創 器のコードを使用します。
シリコン製開創器コード	オプションの開創器を補助し、レッグポジショナーに固定するために使 用します。

表2 滅菌済使い捨て器具

レッグポジショナー

屈曲、内旋 /外旋、および内転/外転のさまざま角度の膝関節を確実に安定させるために Stryker の レッグ・ポジショナー・システムを使用します。また、システムには、カメラとトラッキングアレイ の間の外科医や手術助手の妨害を最小にするオプションの自己保持開創器ソリューションも含まれて います。Mako TKA 手術のレッグポジショナーは次のことが行えます。

- 無菌野において決定した位置および機能で脚を簡単に保持する。
- 段階的に止め、過屈曲に対応して下脚の内旋 / 外旋を行えるようにする。
- ユーザーが患者の脚位置を無菌野内に制御できるようにする。
- 全範囲の屈曲および伸展角で脚の位置決めを行える。
- さまざまな体格の患者での安定性を維持する。
- レッグポジショナーに固定することができるオプションの自己保持開創器使用を可能にする。

レッグポジショナーシステムの設定の詳細については、「レッグ・ポジショナー・ユーザー・ガイ ド (PN 210470-09)」を参照してください。

MAKO 統合型切除システム(MICS)

MAKO 統合型切除システムには、MICS ハンドピース、切除アタッチメント、切除ツールが含まれて います。Mako TKA 手術に必要なアタッチメントや切除ツールには、サジタル・ソー・アタッチメン ト、直角ソーアタッチメント、MICS 標準ソーブレード、MICS ナロー・ソー・ブレードが含まれてい ます。MICS ハンドピースは、近位脛骨の骨面切除、引き続く大腿骨切除(前方、前方面取り部、遠 位、後方面取り部および後方)に使用します。

手術の設定

MAKO の調製

滅菌された職員

Mako TKA 手術の Mako の正規設定時の指示については、*Mako システムユーザーガイド* (*PN 210711-09)*を参照してください。

本ガイドに示されている画像は単に例示を目的とするものであり、手術室での実際の無菌野ドレー ピングを表現するものではありません。

器具の調製

滅菌された職員

VIZADISC の取り扱い

VIZADISC は滅菌状態で出荷され、繰り返し使用できません。滅菌状態が保たれていなければ、汚 染された VIZADISC を新しい VIZADISC と取り換えてください。VIZADISC は、無菌野で使用状況 に置かれると、再滅菌することはできません。

より高いエラー値やアレイの追跡能力につながる不正確さの原因となるおそれがあるため、 VIZADISC をアレイや探針の取り付けポストに取り付ける際は、VIZADISC をねじらないようにし てください。取り外す時にマーカがねじられたら、アレイ取り付けポストを調べて、ポストが固定 され、回転しないことを確認してください。

VIZADISC と取り付けポストの間の係合不良(または、取り付けポストから脱落した VIZADISC) は、位置精度に悪影響を及ぼすおそれがあります。VIZADISC が正しく取り付けられていないか、 外れていたら、使用しないでください。これを怠ると、システムの精度を損ねるおそれがありま す。

VIZADISC は、特定の器具または参照アレイに配置た時にその位置や向きをシステムが計算できるようにする反射マーカです。液体、骨破片、またはその他の閉塞物は、ツールのカメラ表示を不明瞭にし、器具のトラッキング不能に陥らせるおそれがあります。VIZADISC を清潔にし、骨破片が付着しないように注意します。洗浄しても器具がカメラで見えない場合は、閉塞物のある VIZADISC を交換します。

VIZADISC は常に平坦な表面上で組み立て、ディスクが完全に器具の上に固定されていることを確認してください。

粉末の付いた手袋は VIZADISC の反射を妨げ、ツールのトラッキングに悪影響を及ぼす可能性があ ります。

常にアレイは注意をして取り扱ってください。可能であれば、アレイは他の器具類から離し、損傷 を避けてください。 トラック済み器具のアセンブリ *滅菌された職員*

本書に記載するトラック済み器具への VIZADISC 組立て時の指示については、Mako システムユー ザーガイド (PN 210711-09) を参照してください。

- 1. 膝関節大腿骨アレイ (灰色) 4 つの VIZADISC を装着。
- 2. 膝関節脛骨アレイ(黒色)-4 つの VIZADISC を装着。

膝関節大腿骨アレイ

膝関節脛骨アレイ

- 3. ロボットアームベースアレイ (黒色、大)-4 つの VIZADISC を装着。
- 4. 膝関節のエンド・エフェクタ・アレイ 4 つの VIZADISC とアレイボルトにネジを装着。

ロボットアームベースアレイ

膝関節のエンド・エフェクタ・アレイ

骨破片は VIZADISC を閉塞させ、システムによる器具のトラッキングが行えなくなるおそれがあり ます。このような場合、位置合わせ済みのアレイにぶつからないよう注意しながら反射面から骨破 片を優しく拭き取ります。

 ブラントおよびシャープ探針 - 探針ごとに3つの VIZADISC を装着。

VIZADISC が装着された探針

6. 2ピンクランプアセンブリ(大腿骨と脛骨)

アレイアセンブリ(左膝と右膝)

7. **RIO 位置合わせアセンブリ**(位置合わせツールと膝エンド エフェクタアレイ)

プラナ探針アセンブリ

患者の位置決め

患者を仰臥位にして手術台のテーブルに寝かせ、膝関節がテーブルのほぼ終端に来るようにします。 手術する下肢をレッグポジショナーに固定し、手術しない下肢は厚紙副子に固定することができます。 こうすることにより、外科医や手術助手がロボットアームに妨げられずに患者の下肢の間で施術対象 関節の近くに立つ柔軟性が与えられます。

セットアップの更なる指示に関しては、「Mako システム・ユーザー・ガイド (PN 210711-09)」を 参照してください。

レッグポジショナー

Stryker レッグポジショナーの組立て / 分解時の詳細な指示は、「レッグ・ポジショナー・ユーザー・ガ イド (PN 210470-09)」に記載されています。

ロボットアームへの MICS ハンドピースの接続

以下のステップを完了する前に Mako をドレープで覆う必要があります。ドレーピング指示に関し ては、「Mako システムユーザーガイド (PN 210711-09)」を参照してください。

滅菌された職員

- 1. MICS 取り付けリングが天井の方向を向いていることを確認しながら、ロボットアームをドレーピング位置に配置します。
- 2. 目的の位置まで来たら、E-ストップを押してアームをロックします。
- 青色のカバーを取り除く前に、アームの MICS 取り付けリングにぴったり合うように、ドレープ上 でプラスチックリングを正しい方向に合わせてください。必要ならば、青色カバーが MICS 取り付 けリングを超えて設置されるようにドレープを回転させてください。
- 1. 青色カバー近くのアーム下にある余分なドレープを、片方の 手で持っていてください。もう一方の手で、プルタブを利用 して隅からゆっくり引っ張ってください。どちらかの隅を、 青色カバーが完全に取り除かれるまで中央に向かって引っ 張ってください。

5. 青色のカバーの底面は汚染されていると考える必要があるため、青色のカバーは廃棄します。これにより未滅菌の MICS 取り付けリングが露出します。

6. 画像に示されているとおり、溝と位置合せピンが取り付け リングのそれらと一致するよう、無菌の MICS ハンドピー スを正しい位置に向けます。

アームの動作不良を避けるため、MICS ハンドピースを 取り付ける前に、確実にドレープを正しい方向に合わせ てください。

余分なドレープが MICS / 取り付け接続部から引きはがされていて、ドレープのプラスチックリングが取り付けリングに固定されていることを確認してください。MICS ハンドピースを取付けリングに装着します。次のステップに進む前に、均等に正しく固定されていることを確認してください。

14

- 接続とドレープの方向が満足できる状態になれば、 MICS ハンドピースのネジを無菌の四角ドライバー でしっかり締めてください。これでアームのドレー ピング作業は完了です。
- 9. 供給されている丸いステッカーで丸いネジ穴を覆っ てください。
- ドッキング位置でロボットアームの位置を調整します。Mako (MAKOplasty) TKA アプリケーションが起動すると、ロボットアームが若干動くことがあります。ロボットアームをドッキング位置に維持すると、無菌状態の維持が確保されます。

付属のステッカーをネジ穴に貼り損ねると、汚染の危険につながる可能性があります。

MICS ハンドピースは、熱くなり過ぎている場合、電源が入りません。そのような場合は、スタッ フが器具を容易に扱えるように、ハンドピースを冷却させるために時間を取ってください。

MICS ハンドピースへの MICS アタッチメント装着

以下のステップを完了する前に Mako をドレープで覆う必要があります。ドレーピング指示に関し ては、「Mako システムユーザーガイド (PN 210711-09)」を参照してください。

滅菌された職員

1. MICS ハンドピースのアタッチメント固定輪のロッ クを解除します。ロック解除記号を利用して回転方 向を決めます。赤いバンドが見えるはずです。

2. a) ブレード取り付けノブが上になるように(右の図のように)、サジタル・ソー・アタッチメントを正しい位置に取り付けます。
b) 直角ソーアタッチメントの場合、アタッチメントの直角部分が下のロボットアームのベースの方を向くようにアタッチメントを取り付けます。

 3. a) MICS ハンドピースのアタッチメント固定輪を ロックしてサジタル・ソー・アタッチメントを固定 します(右の図のように)。
b) 直角ソーアタッチメントの場合、アプリケーション画面の画像に示されるとおり、直角部分が中央の 右または左を指すようにしてハンドピースのアタッ チメント固定輪をロックします。

サジタルソーまたは直角ソー、もしくはこの両方の取り付けノブを締め過ぎてソーブレードの取り 外しが困難になるようであれば、MICS 取り付けレンチを使用してノブを緩めます。

MICS アタッチメントへのソーブレード装着

以下のステップを完了する前に Mako をドレープで覆う必要があります。ドレーピングの指示に関 しては、「Mako システム・ユーザー・ガイド (PN 210711-09)」を参照してください。

滅菌された職員

ソーアタッチメントのノブを回してブレード解除機構を開けます。

ブレードをソー・アタッチメント・プラットフォームに取り付けます。

ソーアタッチメントのノブを回してブレード解除機構を閉じます。ノブが最後まで回され、ブレードがしっかり固定されていることを確認します。

術中に取り付けを行う場合、新しいブレードを取り付ける前にアタッチメントプラットフォームの 骨破片をチェックし、取り除きます。ブレードはアタッチメントプラットフォームと同一平面に着 座します。ラチェット機構が不具合をきたすおそれがあるため、取り付けノブの締め過ぎに注意し てください。

MAKO (MAKOplasty) TKA アプリケーションソフトウェアの概要

MAKOplasty ログイン画面

システムに電源が入ると、MAKOplasty ログイン画面が表示されます。Mako (MAKOplasty) TKA アプ リケーションを有効にするため、「Username (ユーザー名)」と「Password (パスワード)」を入力し てから「Login (ログイン)」ボタンを選択してください。可能なユーザータイプは、医療ユーザー、 管理者、そしてサービスです。

ログイン画面

ユーザー管理

病院管理者 / Mako 製品専門医

初期設定により、システムは管理者とサービスアカウントでのみインストールできます。管理者パス ワードは、病院で指定された IT 管理者に与えられます。以下の手順に従って、Administrator(管理者) が個々のユーザーをセットアップする必要があります。

 「Service (サービス)」オプションを選んでサービス メニューを表示し、「User Management (ユーザー管 理)」オプションを選択してください。ユーザー管理 画面が表示されます。

	Create	User
	Edit U	ser
	Delete	User
	Exit	_
🌑 Disable USB Log		

ユーザー管理画面

- Create User (ユーザーの作成)」オプションを選び、システムにユーザーを追加してください。それぞれのフィールドで要求された情報を入力したら、「Submit(送信)」を選択します。
- 「Edit User (ユーザーの編集)」オプションを選び、すでにシ ステムに入っているユーザーを編集します。それぞれの フィールドで要求された情報を入力したら、「Submit(送 信)」を選択します。

ユーザーを作成

 「Delete User (ユーザーを削除)」を選択して、システムから ユーザーを永久に削除します。

アプリケーションが 60 分かそれ以上放置されたら、ロックアウト画面が表示され、ユーザーは割り当 てられた「パスワード」でシステムにログインしてセッションを続けるか、「ログアウト」してセッ ションを終了させなければなりません。

USB ログイン

管理者が作成していないユーザーに対してユーザーアクセスが必要な場合は、Stryker 供給 USB ログ インキーを使用してログインすることができます。USB キーが認識されたら、パスワードを入力し、 「Login(ログイン)」ボタンを選択してシステムにログインしてください。

管理者には、ラジオボタンの「Disable USB Login(USB ログインを無効にする)」にチェックを入れ て USB キーでシステムにログインする機能を無効にするオプションが与えられます。このオプション は、サービスを除くすべてのユーザーによる USB キーを介するシステムへのアクセスを防ぎます。

起動画面

システムにログオンすると、MAKOplastyの起動ページが表示されます。右パネルの選択は下記に説明 される機能を制御します。

「Service (サービス)」ボタンは、管理者か、サービスアクセス特権を持つユーザーのみ が使用可能です

起動画面

術前チェック

各手技の前に、すべての術前チェックを実施し、ロボットアームの精度を確認する必要があります。 「Pre-Surgery Check(術前チェック)」を選択すると、治療前に Mako 製品専門医(MPS)が実行する 一連のユーティリティーが開きます。MPS 計画立案ラップトップではこのボタンを使用できません。

MICS ハンドピースを使用する前に、MICS Status Check(MICS ステータスチェック)を実施してハンドピースが機能していることを確認します。

スキャンの読み込み

患者データをインポートしてチェックするためのツールにアクセスするには、「Load Scans (スキャン の読み込み)」を選択します。詳細については、本マニュアルの「スキャンの読み込み」セクションを 参照してください。

計画

「Plans (計画)」ボタンが開くメニューで、ユーザーは計画を管理することができます。詳細については、本マニュアルの「計画の管理」セクションを参照してください。

TKA

このオプションは Mako(MAKOplasty) TKA アプリケーションソフトウェアを開始させます。詳細に ついては、本マニュアルの「*患者計画の作成」*セクションを参照してください。

サービス

このオプションは、システムにログオンしているユーザーに管理者ア クセス権、もしくはサービスアクセス権がある場合のみ表示されます。 ユーザーの作成、編集、削除に関する説明については、「ユーザー管 理」セクションを参照してください。

このオプションで使用できる選択はアクセス特権によって異なります。

サービスメニュー

ユーティリティー

このオプションは、システムのログファイル、レポート、ユーティリ ティーにアクセスするための選択があるメニューを表示します。この メニューを介してシステムを更新することもできます。使用可能なそ の他のオプションには、音量調整や、Mako (MAKOplasty) TKA アプ リケーション内のどこからでも USB にスクリーンショットをエクス ポートできるものがあります。MPS 計画立案ラップトップでは、一部 のメニュー項目を使用できません。

ログアウト

このオプションは、アプリケーションから現在のユーザーをログアウトします。

システムの終了

このオプションは、Mako システムの終了手順を開始します。詳細については、「Mako システムユー ザーガイド (PN 210711-09)」の「RIO システムの終了」セクションを参照してください。

計画の管理

Plans

「Plans (計画)」ボタンが開くメニューで、ユーザーは以下に一覧表示 される機能を実施することができます。

「Archive (アーカイブ)」、「Unarchive (アーカイブ解除)」、 「Import (インポート)」、「Export (エクスポート)」、および 「Delete features (機能の削除)」は同じダイアログボックス フォーマットを使用し、単一、または複数の計画への変更が可能 です。詳細については、「Importing/Exporting Patient Plans (患者 計画のインポート/エクスポート)」を参照してください。

Archive Plans(計画のアーカイブ)

このオプションによりユーザーは、事前に作成された1つかそれ以上 の計画を選び、必要なければそれらをアーカイブすることができます。 アーカイブされた計画は、「TKA」メニュー上の「Open Patient Plan (患者計画を開く)」の使用可能な患者計画のリストには表示されません。

計画メニュー

Unarchive Plans (計画のアーカイブ解除)

このオプションにより、ユーザーは事前にアーカイブされた計画を選びそれらを使用可能なフォーム に戻すことができます。

Export Plan to USB(USB に計画をエクスポートする)

Mako 製品専門医 (MPS) のラップトップ上で作成された患者計画を USB 経由でエクスポートし、ガ イダンスモジュール上で使用できるようにしなければなりません。「Export Plan to USB (計画を USB にエクスポート)」オプションでは、1 つ以上の患者計画を選び、USB 上の必要データの暗号化コピー を作成します。この機能は、1 つのガイダンスモジュールからもう 1 つのガイダンスモジュールへの エクスポートにも使用することができます。

Import Plan from USB(USB から計画をインポートする)

このオプションはエクスポートの反対です。MPS のラップトップまたはもう 1 つのガイダンスモジュールから USB 上の 1 つ以上の暗号化計画をガイダンスモジュールへ転送することができます。

Delete Plan from USB(USB から計画を削除する)

このオプションにより、ユーザーは挿入した USB 上で使用可能な計画のリストを見ることができ、リ ストから 1 つ以上の計画を削除することができます。

Remove Files from RIO (RIO からファイルを削除する)

このオプションは Mako (MAKOplasty) TKA アプリケーションの管理者のみが使用可能で、アーカイ ブされている計画、アーカイブされていない計画、現在システムに保存されている DICOM データを ユーザーが完全に削除できるようにします。

「Remove Files from RIO (RIO からのファイルの削除)」オプションは 「Remove Session Files (セッションファイルの削除)」として MPS ラップトップ上に表示され、すべてのラップトップ ユーザーが使用できます。 患者計画のインポート / エクスポート (ガイダンスモジュールまたは MPS ラップトップ) Mako 製品専門医

下記の説明は、ガイダンスモジュールと MPS ラップトップの両方に適用されます。ガイダンスモジュールの上で患者計画が作成された場合は、エクスポートの必要はありません。

- 1. USB を USB ポートに差し込みます。
- 「MAKOplasty Startup (MAKOplasty の起動)」画面から、「Plans (計画)」を選択後、適切な 「Import/Export (インポート / エクスポート)」の選択を行います。以下に示すダイアログボックス が表示されます。左側のリストには、USB (インポート用)またはハードドライブ (エクスポート 用)上で使用可能な計画が表示されます。

インポート / エクスポート / アーカイブ / アーカイブ解除 / ダイアログボックス

- 3. 希望する計画を左側の一覧から選択して、「Add(追加)」を選択してください。患者計画名が右側の一覧にコピーされます。目的の計画を選択し、「Remove(削除)」を選択してリストから計画を 削除することができます。
- 4.「OK」を選択してください。ソフトウェアが、右側に一覧表示されたすべての計画を転送します。
- エクスポートする場合、患者計画を匿名にするどうかを確認してください。計画を匿名にすると、 患者名へのすべての参照が削除されます。外科医へ計画をエクスポートする場合は、「No(いい え)」を選んでください。調査または分析目的で Stryker の職員とファイルを共有する場合は、 「Yes(はい)」を選択します。複合オフセット計画をエクスポートする際は、複数回確認をする必 要があります。

次に進む前に、ソフトウェアがUSB を安全に取り外せることを確認するまで必ず待ってください。 USB のライトが点滅している間はメディアを取り外さないでください。

患者計画が含まれている USB を他のデータの保存に使用することはできません。この USB を他の 目的に使用すると、患者計画を損ねる可能性があります。

計画を USB にエクスポートするときに「Plans (計画)」ウィンドウの左下隅の「Include Archives (アーカイブを含める)」チェックボックスを選択すると、アーカイブ済みの計画にアクセスするこ とができます。

患者計画のエクスポート(MPS ラップトップのみ)

Mako セグメンテーション専門医 / Mako 製品専門医

MPS ラップトップ上で実行されている Mako (MAKOplasty) TKA アプリケーションには 「Shutdown (シャットダウン)」ページがあり、アプリケーション内で現在開いている患者計画をここからエクス ポートすることができます。

USB が挿入されていることを確認し、「Shutdown(シャットダウン)」ページから 「Exit(終了する)」 を選択すると、アプリケーションは最初に現在の計画を USB にエクスポートしてからアプリケーショ ンを終了します。

スキャンの読み込み

「Create Plan from Media (メディアからの計画の作成)」オプションを使用して患者計画を作成す る場合は、「Import DICOM (DICOM のインポート)」および「Check for Motion (動きについて チェック)」オプションを実施する必要はありません。

アプリケーションに患者特有の骨モデルを作成させるためには、最初 に CT データをインポートする必要があります。このメニューでは、 以下の3つのオプションを利用できます。

- Import DICOM (DICOM のインポート) このオプションは CD または USB 経由で患者データをインポートします。
- 2. Check for Motion (動きについてチェック) この機能は患者ス キャンの完全性をチェックします。
- Import Models from USB (USB からモデルをインポート) この 機能は現在 Mako (MAKOplasty) TKA アプリケーションでは使用 されていません。

Import DICOM	
Check For Motion	
Import Model(s) From USB	
Close	

スキャンの読み込みメニュー

Mako TKA アプリケーションユーザーガイド

DICOM のインポート

Mako セグメンテーション専門医 / Mako 製品専門医

ガイダンスモジュールまたは Mako 製品専門医 (MPS) のラップトップでは、以下の手順を実施する ことができます。

- 1. 放射線検査(詳細については、Mako Knee CT スキャンプロトコル (PN 200004-09)参照)から含 めた適切なデータセットの入った DICOM CD を入手し、その CD をドライブに挿入します。
- 2. スタートアップメニューから「Load Scans (スキャンの読み込み)」を選択したら、「Import DICOM from CD (CD から DICOM をインポートする)」を選択します。
 - a. 「Do you wish to convert all DICOM(すべての DICOM を変換しますか)」に対して 「Yes(は い)」を選択します。
 - b. CDの画像数を示すメッセージが表示されたら、「Yes(はい)」を選択します。
- 3. 「Review DICOM Images(DICOM 画像のレビュー)」ウィンドウが表示された場合、3 つの解剖学 的領域をそれぞれ確認します。
 - a. ウィンドウの下段に表示されている画像セット名を選択し、表示された画像を見直します。画 像には、膝関節、股関節、または足首関節の解剖学的構造が示されます。ページの下部にある ドロップダウンメニューから、適切な解剖学的断面を選択し、「Accept(承認)」を選択します。
 - 1566 LEFT 7129 CT 1566 LEFT 7129 CT 1566 LEFT 7129 CT
 - b. 3 断面のすべてでこの作業を繰り返します。

DICOM のレビューウィンドウ

Accept Delete Images

患者の DICOM CD で 3 箇所を超える必須膝関節領域が表示される場合は、余分な画像を削除する 必要があります。画面中央から画像セットを選択し、「Delete Images (画像の削除)」を選択して 余分な画像を削除します。

動きのチェック

Mako セグメンテーション専門医 / Mako 製品専門医

最も正確な骨位置合わせを行うには、アプリケーションが CT スキャンデータのアライメントを確認 する必要があります。次の手順では、スキャン中に患者が動いたことによる何らかの異常について、 ソフトウェアが患者スキャンをチェックします。

1. 画像が特定されている場合は、「Review DICOM Images (DICOM 画像のレビュー)」ウィンドウが 閉じます。「Load Scans (スキャンの読み込み)」メニューから 「Motion Check (動きのチェッ ク)」を選択します。

- 2. ウィンドウ中央のボックスから問題の患者膝関節断面を選択した後、いずれかの「Load (読み込み)」を選択します(順序は重要ではありません)。「Load (読み込み)」の上のボックスに画像が 表示されます。
- 3. 残っている2つの「Load (読み込み)」選択で、同じ患者の股関節断面と足首関節断面についても 手順2を繰り返します。
- 4. 3 つの解剖学的領域のすべてを読み込んだら、ウィンドウ下部にある 「Motion Check (動きの チェック)」を選択します。

動きのチェック読み込みウィンドウ

5.「Motion Check (動きのチェック)」ウィンドウが表示される と、アプリケーションが自動的にモーションロッドを検出し て動きのチェックを開始します。完了すると、エラーが画面 に表示されます。メッセージが緑色で表示される場合、 チェックに合格しました。メッセージが赤色で表示される場 合、チェックに失敗しており、問題を適切に解決する必要が あります。

自動動きのチェックが不適切に失敗とされた場合(例え ば、アプリケーションがモーションロッドではなく股関 節インプラントを選択した)、「Restart(再スタート)」を 選択すると、手動でモーションロッドを選択できるよう になります。

6.「Close (閉じる)」をクリックして続行します。

動きのチェックウィンドウ

アプリケーションソフトウェアの配置図

ソフトウェアの配置図

1. メインウィンドウ

骨モデル、インプラント計画、および所定の処置手順への他の情報を一次的に可視化するスペース。

2. ナビゲーションタブ

処置手順を選択することにより、ユーザーはアプリケーション のさまざまなページを移動することができます。タブごとにそ の手順で使用できるページが付いたメニューを開きます。ソフ トウェアのページは、ページ名(項目 1)を選択して画面上部の ナビゲーションタブを使用するか、画面右下隅の戻る(<)およ び次へ(>)ボタン(項目 8)を使用してページごとに順次切り 替えて選択することができます。戻る(<)および次へ(>)ボ タンの上のすべてのページにアクティブなページ名が表示され ます。

ナビゲーションツールバー(項目 1)

選択済み

スライダ-

3. 画像調整ボタン

選択した画面上では、スライダーを使用して画像やモデルの拡大表示、 コントラスト、明るさを調整します。スライダーは選択したアイコンに 適用されます。

画像調整ボタン

 \mathbf{O}

ю́

4. 上部メニュー

インフォメーションボックス 🛄

各ソーアタッチメント(ストレートや斜め)に取り付けるソーブレードの種類(標準またはナロー) を表示したり、「Implant Planning(インプラント計画立案)」ページから大腿骨や脛骨に予定されてい る切除の深度を表示したりするインフォメーションボックスが開きます。

「Implant Planning (インプラント計画立案)」ページに前提条件がある場合は、必須ソーブレード のみが表示されます。

下記の選択が付いたオプションメニューを開きます。オプションメニューはどのソフトウェアページ からでも使用可能です。

Rename(名前の変更)-患者計画の名前を変更することができます。

Exit(終了)- アプリケーションを閉じて「MAKOplasty Startup (MAKOplasty の起動)」ページに戻ります。

Sound Volume (音量)-「Sound Volume (音量)」調整ウィンドウを開き ます。

Camera View(カメラビュー)- アレイと探針の位置を表示できる 「Camera View(カメラビュー)」ウィンドウを開きます。(カメラ・ ビュー・ツールバー内で左クリックしてもこの機能にアクセスできます)。

Draping Mode(ドレーピングモード)-ドレーピング手順中に、ユーザー はロボットアームを半固定にすることができます。「Implant Planning(イ ンプラント計画立案)」ページを除く「RIO Registration(RIO 位置合わ せ)」以後のすべてのページで、ドレーピングモードが自動的に無効にな ります。

Reset Cutter (カッターのリセット) - 切除システムをリセットします。こ

のプロセスでは、通信を確立し直すために 10 秒待つ必要があります。「Reset Cutter(カッターのリ セット)」は、アプリケーション内の特定のページのみから使用可能です 1

「Reset Cutter (カッターのリセット)」オプションは、MICS エラーの支援策としてMICS サー バーを再起動し、カッターのソフトリブートを実施する際に使用することができます。

About (バージョン情報) - ソフトウェアバージョン情報を表示します。

Export Plan to USB (計画を USB にエクスポート) - 現在の計画を USB にエクスポートします。

Save Captures to USB(キャプチャーを USB に保存)- 現在の計画のすべてのスクリーンショットを .jpg フォーマットで接続されている USB に転送します。

所定のページのスクリーンショットを撮影します。スクリーンショットが撮影されると、「画面」ボタンの上に一瞬チェックマークアイコンが表示されます。

撮影したスクリーンショットは、起動ページのユーティリティーメニューまたはオプションメ ニューから .jpg フォーマットで USB にエクスポートすることができます。

特定のソフトウェアページでは(例えば、患者データが表示されるページ)、画面ボタンを使用で きない場合があります。

5. カメラ・ビュー・ツールバー

カメラ・ビュー・アイコンは、所定の手続きページで必要な器具を示します。左から右への表示順序 で、アイコンは以下の器具を示します。

- 膝部脛骨アレイ
- ・ 膝部大腿骨アレイ
- ロボットアームベースアレイ
- 膝関節のエンド・エフェク
- ター・アレイ
- 探針

下に示されているアイコンは数あるツールバーアイコンの状態の例であり、ツールバーアイコンの 色が変化しうること示しています。

器具が必要で、カメラから見えま す。

器具が必要ですが、カメラから見え ません。

器具は必要ではなく、カメラから見 えます。

器具は必要ではなく、カメラから見 えません。

Bone Registration (骨位置合わせ) ページにいる間、器具アイコン (ロボット・アーム・ベースア レイ、膝関節のエンド・エフェクター・アレイ、および反対側の骨アレイ) はカメラから見える場 合でも表示されなくなります。 カメラツールバーの中側をどこでも左クリックすると、カメラ・ビュー・ ウィンドウが開きます。アレイと器具の正確で信頼のおけるトラッキングを 確実に行うために、カメラ・ビュー・ウィンドウが外科医と MPS にカメラ の位置合わせ情報を提供します。

- アレイと器具を表す円形が、上部、前部、そして側面の3つのビューで 表示されます。
 - 見えるときは、アレイ/器具は色彩円で表示されます。
 - 一部見えるときは、アレイ/器具は空円で表示されます。
 - 見えないときにはアレイ / 器具は表示されません。
- ベース・トラッカー・アレイが膝関節中央から遠すぎてシステムを続行 できないかどうかというしるし。また、このビューに表示されているの は各トラッカーの色の凡例です。

6. コントロールパネル

下のサイド・メニュー・インジケータは、所定の手続きページで使用できる 機能や必要な器具類を示します。

このステータスバー機能は、位置合わせや較正等の数値が表示されると きにサイドメニューの上部に表示されます。赤色のバーは値が事前に設 定された許容域を超えていること、黄色のバーは望ましい制限値を超え ているが、依然として受け入れることができる結果を得られるものとさ れている事前設定許容域内にあること、緑色は許容値であることを示し ます。

カメラ・ビュー・ ウィンドウ

7. インフォメーションボックス

インフォメーションボックスには、警告やエラーメッセージと同時に、現在の手順またはソフトウェ アページの追加指示が表示されます。

インフォメーションメッセージ

インフォメーションメッセージは、青色の縁取りで画面中央に表示されます。表示される情報には、 次に進むための推奨手順が含まれます。メッセージボックスを閉じるには「Continue(続ける)」を選 択します。

警告およびエラーメッセージ

警告およびエラーメッセージは次のように表示されます。

- 治療フローを中断させる可能性があるか、または医師にとって重要な情報を表示するエラーメッセージは、赤色の縁取りで画面中央に表示されます。続行するにはエラーの原因を解消する必要があります。
- 警告メッセージは、未解決のまま放置するとシステムの性能に悪影響を及ぼす可能性のある状態が Mako (MAKOplasty) TKA アプリケーションに存在することを示します。警告メッセージは警告 メッセージアイコンとして画面下部に表示されます。そのアイコンをクリックすると、警告の説明 やトラブルシューティングが表示されるインフォメーションボックスが開きます。

- 8. ページ情報 / ナビゲーション
- A. ページ名は、戻る(<) 矢印と次へ(>) 矢印の上に表示されます。
- B. 戻る (<) および次へ (>) を選択すると、ユーザーは ソフトウェアページを変更することができます。

ページナビゲーション

ソフトウェアナビゲーションタブ

ー部のソフトウェアページは、必須の手順が完了しているときにのみ開くことができます(例えば、骨の調製は骨位置合わせが完了した後にしか表示されません)。ページメニューで開けない ページ名(灰色の文字)を選択すると、そのページに移動するための必須条件を説明するメッセー ジが表示されます。

「RIO Setup (RIO の設定)」および「RIO Registration (RIO 位置合わせ)」ページには、 「Surgeon Preferences (外科医の優先設定)」で当該オプションを選択する「Implant Planning (インプラント計画立案)」の後でも移動することができます。

骨位置合わせを完了し、必要な骨ごとに検証球体を1 つ取り込まなければ [Bone Preparation (骨の調製)] には移動できません。

Restore Last Plan: PreparationLastAcce

「TKA」メニュー

患者計画を作成して開く(ガイダンスモジュールまたは MPS ラップトップ)

Mako セグメンテーション専門医 / Mako 製品専門医

「TKA] を選択後、アプリケーションは計画作成オプションと開始オプ ションを表示します。

メディアからの計画の作成

「Create Plan from Media (メディアからの計画の作成)」オプション は、患者計画を作成する上で効率的なプロセスです。データの転送、 データの変換、領域の識別、動きのチェック、および CT の読み込み手 順が自動的に実行されます。

「Create Plan from Media (メディアからの計画の作成)」オプ ションは、Mako Knee CT スキャンプロトコル (PN 200004-09) に従ってCT スキャンが実施されているものと想定します。動き のチェックに失敗した場合、パラメータが不適切に設定されるな ど、オプションは失敗します。

- 1. 起動画面から「TKA」を選択します。
- 2. CD ドライブに患者データの CD を挿入するか、CT データ が入っている USB を USB ポートに差 し込んだら、「Create Plan from Media (メディアからの計画の作成)」を選択します。
- 3. メッセージが表示されたら、施術側を選択します。
- アプリケーションがデータを自動的にアップロードして処理します。この手順には数分かかります。
- 5. アプリケーションは「Motion Check (動きのチェック)」機能の自動的実施を試みます。モー ションロッドを自動的に見つけられない場合、ユーザーによるロッドの手動特定が許可されます。
- 6. 動きのチェックに合格すると、「Patient Information (患者情報)」ページが表示されます。

「Create Plan from Media (メディアからの計画の作成)」機能を正常に完了すると、その患者の「CT Load (CT の読み込み)」手順は完了します。アプリケーションワークフローではその手順をスキップすることができます。

新しい患者計画

- 1. 「Import DICOM (DICOM のインポート)」および 「動きのチェック」手順を実施します。
- 2. 起動画面から「TKA」を選択します。
- 3. 「New Patient Plan (新しい患者計画)」を選択してください。アプリケーションが患者計画を作成 して、アプリケーション・スプラッシュ・ページに進みます。

「Create Plan from Media (メディアからの計画の作成)」オプションとは異なり、「New Patient Plan (新しい患者計画」オプションでは、アプリケーション内で「CT Load (CT の読み込み)」 手順を手動で実施する必要があります。

患者計画を開く

「Open Patient Plan (患者計画を開く)」機能は、既に作成されている計画を適用対象とします。

- 1. 起動画面から「TKA」を選択します。
- 2. 「Open Patient Plan (患者計画を開く)」を選択してください。
- 3. 希望する計画を、使用可能な計画の一覧から選択して、「OK」を選択してください。アプリケー ションはスプラッシュページに進みます。

計画を開くアプリケーションとは異なるソフトウェアバージョンを使用して患者計画を作成し、エ クスポートすることが可能です。この場合、バージョンの不一致をユーザーに知らせるメッセージ が画面に表示されます。ユーザーにシーケンスの不一致を知らせる第二のメッセージ(注意とし て)も表示されることがあります。続行するにはこのようなメッセージの両方を無視する必要があ ります。

アプリケーションリリースノートを参照してバージョンの互換性を確かめてください。

最後の計画の復元

このオプションを選択すると、システム上で使用された最後の計画が復元されます。ボタンには直近の計画の名前が表示されます。前の計画が存在しないか削除された場合は、ボタンは灰色表示になります。

デモ

このオプションを選択すると「Demo (デモ)」モードが始まり、右 または左模擬骨計画を選択するオプションのある 「Demo (デモ)」 メニューが表示されます。

閉じる

このオプションは「TKA] メニューを閉じます。

デモメニュー
治療計画立案

患者情報

Mako セグメンテーション専門医 / Mako 製品専門医

「Patient Information (患者情報)」ページで、施術側とインプラントシステムを選択し、外科医の優先 設定を設定します。

- 「Implant System (インプラントシステム)」変更ボタンを選択して目的のインプラントシステム / 構成を選びます。
- 2. ドロップダウンリストから、施術側を選択します。
- 優先設定の既存セットを選択するか、新しい優先設定を作成します(本マニュアルの「外科医の優先設定」セクションを参照してください)。

stryker	Case Planning	Pre-Op RIO Check	Bone Registration	Intra-Op Planning	Bone Preparation	Case Completion	Default 🚺		
					Implant System: Operative Side: Preferences:	Triathlon® CR Cruciform Left Default Edit Doicte	Þ		
						Pat	ient Information		
								>	

「Implant System (インプラントシステム)」ボタン

患者情報画面

Mako TKA アプリケーションユーザーガイド

インプラントシステムの変更

Mako セグメンテーション専門医 / Mako 製品専門医

「Implant System (インプラントシステム)」変更ボタンを選択すると、 右に示されているダイアログボックスが開きます。インプラントシス テムは、このダイアログボックスの「Product Line (製品ライン)」、 「Procedure (処置)」、および「Baseplate (ベースプレート)」セク ションの組み合わせにより決定されます。

Product Line (製品ライン) または Procedure (処置) が選択さ れると、利用できるオプションが適宜更新されます。使用できな いオプションは灰色表示になります。

インプラントシステムの変更方法:

- 1. 「Implant System (インプラントシステム)」変更ボタンを選択します。
- 2. 目的の「Product Line(製品ライン)」を選択します。
- 3.「Procedure (処置)」のタイプを選択します。
- 4. 該当する場合、目的の「Baseplate (ベースプレート)」のタイプを選択します。
- 5. 選択した変更を「Save (保存)」します。
- インプラントシステムを異なるファミリーに変更した場合、現在の計画が新しい選択に適用される ことを伝えるメッセージが表示されます。表示されるメッセージには、「You have chosen to change the Implant System, the current implant plan will be applied to your selection. (インプラント システムの変更を選択されました。現在のインプラント計画はご選択の適用対象になります。)」と 示されます。

インプラントシステムを変更する場合、切断の前に計画を見直して確認することをお勧めします。

3 つのセクションのすべて「(Product Line (製品ライン)」、「Procedure (処置)」、「Baseplate (ベ-スプレ-F)」を選択していなければ、「Save (保存)」ボタンは無効になります。

「Implant System (インプラントシステム)」変更ボタンは、「Patient Information (患者情報)」、 「Implant Planning (インプラント計画立案)」、および「Ligament Balancing (靭帯バランシング)」 の各ページで使用できます。

インプラントシステムの選択

外科医の優先設定

Mako 製品専門医

Surgeon Preferences(外科医の優先設定)オプションにより、アプリケーションを外科医の優先設定 に合わせて設定することができます。保存後、一連の優先設定はすべての患者計画に保存されます。 複数の外科医の優先設定は、以下のように設定することができます。Surgeon Preference(外科医の 優先設定)名は情報アイコンの左の上部メニューに表示されます。

新しい優先設定の設定:

- 1. 「Preferences (優先設定)」ドロップダウンメニューから 「New (新規)」を選択します。Surgeon Preference (外科医の優先設定) ダイアログボックスが開きます。
- 2. 優先設定ウィンドウで、「Name (名前)」テキストボックスに目的の外科医名を入力します。
- 3. 適切なタブを選択し、すべての優先設定の選択を行います。
- 4. すべての優先設定を完了したら、「Save & Exit(保存して終了)」を選択します。

Preferences:	Default	<u> </u>	

優先設定ウィンドウ

既存の優先設定のセットを選択する:

新しい患者計画の優先設定は「Default(初期設定)」に設定されます。既存の優先設定セットを変更す る方法は、優先設定ドロップダウンボックス内部でクリックし、適切な名前を選択するだけです。編 集と保存は必要ありません。

既存の優先設定セットを削除する:

優先設定のセットを削除するには、「Preferences (優先設定)」ドロップダウンメニューから該当する 名前を選択し、「Delete (削除)」を選択します。

Surgeon Preference (外科医の優先設定) のどのテキストを選択しても、ボックスの下にその機能 の説明が表示されます。

	Name:	Preferences 1				
Workflow	Page Auto Advance	Bone Registration		Joint Balancing	Planning	Cutting Sequences
	Sele Sel Wo	ct Procedure Workflow ct Ligament Balancing rkflow	Measured Resection Distal/Tibia Cut First		D D	
	Gener	al: Display Accuracy Number				
		Perform RIO Setup and R	O Registration before	3one Preparation		
		Save8	Exit Car	cel		

外科医の優先設定ダイアログ

Workflow (ワークフロー)タブ

Select Procedure Workflow (処置ワークフローの選択) - 以下のような使用可能ワークフロー のリストを表示します:「Measured Resection (Measured Resection 法)」ワークフローまたは 「Ligament Balancing (靭帯バランシング)」ワークフロー。「Measured Resection (Measured Resection 法)」ワークフローでは、「Intra-Op Planning (術中計画)」タブ下の「Joint Balancing (関節バランシング)」および「Implant Planning (インプラント計画立案)」ページが有効になり ます。「Ligament Balancing (靭帯バランシング)」ワークフローを選択すると、「Joint Balancing (関節バランシング)」および「Implant Planning (インプラント計画立案)」ページが無効になり 、それらに換わって「Intra-Op Planning (術中計画)」タブ (初期設定 = Measured Resection 法)下の「Ligament Balancing (靭帯バランシング)」ページが有効になります。

Select Ligament Balancing Workflow(**靭帯バランシングワークフローの選択**) - このワークフ ローを選択すると、ドロップダウンリストから、骨切除の前または遠位大腿骨および近位脛骨切断 実施後に靭帯バランシングを実施するオプションを選択することができます。靭帯バランシングの 前にこれら2種の切断の実施(初期設定 = 遠位 / 脛骨切断が先)を選んだ場合にのみ、計画の調整 は大腿骨に制限されます。

Display Accuracy Numbers (精度の数値を表示する) - チェックポイント、検証などの数値を表示します。この機能を無効にすると、精度の色分け表示(緑色 = 良好、黄色 = 警告、赤色 = 許容 域を超える)のみが示されます(初期設定 = オン)。

Perform RIO Setup and RIO Registration before Bone Preparation (骨の調製の前に RIO の設定 および RIO 位置合わせを実施する) - このオプションが選択された場合、「Bone Preparation (骨の 調製)」ページの前に 「RIO Setup (RIO の設定)」および 「RIO Registration (RIO 位置合わせ)」 ページが移動します (初期設定 = オフ)。

Page Auto Advance (ページ自動移動) タブ

Probe Check (探針チェック) - このオプションが選択された場合、探針検証で正常な値が得られ た後にソフトウェアは自動的に次の手順に移動します(初期設定=オン)。 Patient Time Out(患者のタイムアウト) - このオプションが選択された場合、「Agree(同意する)」ボタン選択後にソフトウェアは自動的に次の手順に移動します(初期設定=オン)。 Patient Landmarks(患者ランドマーク) - このオプションが選択された場合、すべての患者ランドマークが収集された後、ソフトウェアは自動的に次の手順に移動します(初期設定=オン)。 Checkpoints(チェックポイント) - このオプションが選択された場合、両チェックポイントが撮影されて検証された後、ソフトウェアは自動的に次の手順に移動します(初期設定=オン)。 Bone Registration(骨位置合わせ) - このオプションが選択された場合、すべての必須骨モデルの位置合わせが正常に行われ、許容範囲内にあると確認された後、ソフトウェアは自動的に次の手順に移動します(初期設定=オン)。

RIO Registration (RIO 位置合わせ) - このオプションが選択された場合、ロボットアームの位置 合わせが行われ、申し分のない値であると確認された後、ソフトウェアは自動的に次の手順に移動 します(初期設定 = オン)。

Bone Preparation Checkpoint Auto-Proceed (骨の調製チェックポイント自動続行)- このオプ ションが選択された場合、骨やカッターのチェックポイントが合格になると、ソフトウェアは自動 的に 「Bone Preparation (骨の調製)」ページに移動します (初期設定=オン)。

Bone Registration (骨位置合わせ) タブ

Checkpoint Sequence (チェックポイントの順序) - ユーザーは、大腿骨および脛骨チェックポイントを収集して検証する順序を選択することができます(初期設定 = 大腿骨 / 脛骨撮影、大腿骨 / 脛骨検証)。

- Femur/Tibia Capture, Femur/Tibia Verify (大腿骨 / 脛骨撮影、大腿骨 / 脛骨検証) 選択した場合、システムは大腿骨と脛骨チェックポイントを収集後(その順序で)、それを検証します。
- Femur Capture/Verify, Tibia Capture/Verify (大腿骨撮影 / 検証、脛骨撮影 / 検証) 選択した
 場合、システムは最初に大腿骨チェックポイントを収集・検証した後、脛骨チェックポイント
 を収集・検証します。

Auto Rotation(自動回転)-ポイントを収集中に骨モデルを自動的に回転させます。必要に応じて、ユーザーが手動で骨モデルを回転させることもできます。このオプションを無効にすると、骨モデルは静止画で表示され、手動で回転させる必要があります(初期設定=オン)。

Joint Balancing (関節バランシング) タブ

「Joint Balancing (関節バランシング)」タブで使用可能なオプションは 「Measured Resection」 ワークフローのみに適用されます。「Ligament Balancing (靭帯バランシング)」ワークフローが選 択されている場合、「Ligament Balancing (靭帯バランシング)」ページが表示されます。

Select Fixed Model (修正されたモデルの選択) - ユユーザーは大腿骨または脛骨を選択すること ができます。選択した骨は、「Joint Balancing (関節バランシング)」ページで修正されます。下肢 を屈曲させるとその他の骨が移動します(初期設定 = 大腿骨)。

Display ROM Axis (ROM 軸の表示)-「Joint Balancing (関節バランシング)」 画面に視認できる 機能軸を表示することができます。この選択を無効にすると、骨モデルとインプラントモデルのみ が表示されます(初期設定=オフ)。

Mechanical Axis Angle (機能軸角) - このスライダーは最大屈曲角に適用され、「Joint Balancing (関節バランシング)」 画面にはこの角度で機能軸の図が表示されます(初期設定 = 15 度)。

Planning (計画立案) タブ

Select Resection Depth Reference(切除深度の基準の選択)- 術中 「Implant Planning(インプラント計画立案)」の切除を表示する方法を決定するオプションを外科医に与えます。「Bone Resection (骨切除)」を選択すると、切除の深さは骨の表面を基にします。あるいは、「Estimated Cartilage(推定軟骨)」を選択すると、推定された軟骨の2mm が骨切除値に追加されます(初期設定 = 骨切除)。 **Display Total Combined Resection Depth(合計複合切除深さの表示)**- インプラントの内側およ び外側と一致する合計複合切除深さを表示します(初期設定 = オフ)。

Cutting Sequences (切断順序) タブ

ユーザーが切断手順を希望の順序にドラッグアンドドロップして、インプラントシステムごとにカ スタム切除ワークフローを設定できるようにします。

切除手順の変更

Mako 製品専門医

「Cutting Sequences (切断順序)」タブ内からインプラントシステムボタ ンを選択すると、右に示されているダイアログボックスが開きます。イ ンプラントシステムの切除手順の順序は、外科医の優先設定へとカスタ マイズすることができます。

切除手順を変更する方法:

- 1. 利用可能なリストからインプラントシステムを選択します。
- マウスを使用して目的の切除手順を選択し、マウスを1回クリック して並び替えます。
- 3. 選択した手順を目的の位置にドラッグして、マウスボタンを離しま す。
- 4.「Save (保存)」を選択して新しい切断順序を保存します。

インプラントシステムボタンは、「Patient Information (患者情報)」、「Pre-Planning (事前計画立 案)」、および 「Implant Planning (インプラント計画立案)」の各ページで使用することができま す。

CT Load(CT の読み込み)

Mako セグメンテーション専門医 / Mako 製品専門医

すべての患者計画で、DICOM CD からインポートした上部下肢(股関節)、膝関節、および下部下肢(足 首関節)のデータと特定の患者との関連付けを行う必要があります。本セクションでは、その手順を完了 するための手順について説明します。

「Create Plan from CD (CD からの計画の作成)」オプションを使用して患者計画を作成した場合、 該当する患者データと一緒に上部下肢、膝関節、および下部下肢領域が事前に取り込まれます。

CT Load (CT の読み込み) ページ

CT 領域の設定

Mako セグメンテーション専門医 / Mako 製品専門医

- 1. メインウィンドウの右上隅で、該当する患者の「knee (膝関節)」領域(「解剖学的構造」欄で特定 されます)を選択します。4 つの欄はすべて、テキスト右側の小さな矢印を選択して並べ替えるこ とができます。
- コントロールパネルから「Knee (膝関節)」を選択し、「Set (設定)」ボタンをクリックします。これにより、膝関節領域が患者計画内に読み込まれます。コントロールパネルの「Knee (膝関節)」の下に画像データ名が表示されます。
- 3. 上部下肢(股関節)および下部下肢(足首関節)で先の2手順を繰り返します。
- 3 領域のすべてを読み込んだら、ナビゲーションウィンドウから「Next (次へ)」を選択します。 ポップアップ・ダイアログ・ボックスにより、新しく作成した計画に名前を付けるよう要求されま す。このボックスに名前を入力してください。

アプリケーションによって、異なる患者からのデータセットや同じタイプの複数領域(例えば、膝 関節 2ヵ所)の同じ計画内への読み込みが防止されます。領域が正しく特定されなければ、ユー ザーは正しいデータを再度読み込むことができます。

「CT Load (CT の読み込み)」ページでは、不正スキャンパラメータがあるデータが拒否されます。 詳細については、「Mako Knee CT スキャンプロトコル (PN 200004-09)」を参照してください。

CT セグメント

Mako セグメンテーション専門医 / Mako 製品専門医

アプリケーション内で患者の解剖学的構造位置合わせを行うには、正確な骨モデルを作成する必要があります。「CT Segment (CT セグメント)」ページでは、特定済み CT データから大腿骨と脛骨の両方の骨モデルが作成されます。

CT セグメンテーションでは、1 mm スライス密度で大腿骨のサジタルセグメンテーションおよび脛骨 のオブリークセグメンテーション(40 スライス)を使用します。

セグメンテーションページ

CT セグメンテーションの実施

Mako セグメンテーション専門医 / Mako 製品専門医

- 1. アイコンを使用して明るさやコントラストのレベルを設定して皮質骨の白い輪郭が明確に視認できることを確認します。
- 2. コントロールパネルの上部エリアで「Femur (大腿骨)」を選択します。「Set Bounds (境界を設ける)」が強調表示されます。
- 3. 「Sagittal (サジタル)」ビューでは、最大骨幅の領域が「Coronal (コロナル)」ビューと「Transverse (トランスバース)」ビューの両方に表示されるまで十字線を上下、左右にドラッグします。

ビューによっては骨をマウスセンタークリックしてドラッグすることにより、骨を再配置できま す。右上のビューを除くすべてのビューで、骨の再配置を行うことができます。

- 4. 「1 mm Sagittal (1 mm サジタル)」を選択してセグメンテーションの方法を選択します。
- 小さな赤色の四角を選択・ドラッグして青いライン(コロナルおよびトランスバースビューで視認できる)を骨の遠端に配置することにより、手動でセグメンテーションの境界を設定します。右上のビューパネルで位置を確認します。

脛骨遠位の境界は結節の真下に設定します。この境界を必要以上に遠位に設定すると、スライス間 の画像間隔が広がります。

大腿骨サジタルおよび脛骨オブリークのセグメンテーション境界設定例については、「セグメンテーション境界の例」を参照してください。

- 大腿骨サジタルの境界では、最も鮮明な内側および外側骨縁が撮影されている必要があります。
- ・ 脛骨オブリークの境界は近位後方縁を通過して粗面まで遠位に広がっている必要があります。

セグメンテーション境界の例

- 境界線の位置決めを行った後、コントロールパネルから「Set Slices (スライス設定)」を選択しま す。アプリケーションにより、2本の青いラインの間の空間が分割されてスライスになります。作 成されたスライスごとに、次のセクションに記載するツール、指示、検討事項を活用して赤紫色の 「livewire (ライブワイヤー)」で骨の輪郭を下書きします。
- 7. 所定の骨のスライスすべての下書きを行ったら、「Tibia (脛骨)」を選択する前に「Segment (セグ メント)」を選択します。セグメンテーションを終わらせることができない場合、ソフトウェアに スライスの欠如が表示されます。
- 8.「Segment (セグメント)」を選択後、モデル回転機能の付いた 3D 骨モデルが表示されます。特に 位置合わせポイントを収集した領域におけるモデルの異常を調べます。異常を補正するには、異常 が認められる解剖学的領域に再アクセスし、スライスの再セグメンテーションを行うか、スライス の向きを修正します。

- 9. 脛骨で先の手順を繰り返します。
- 10. 両方の骨のセグメンテーションを終えたら、ナビゲーションメニューから 「Next (次へ)」を選択 します。
- CT セグメンテーションツール

セグメンテーションツール

「」 クリア - アクティブなスライスのライブワイヤーの輪郭を消します。

最大化および 最小化-サジタルビューをメインウィンドウのサイズに合わせて拡大します。または、このアイコンをもう一度選択すると、メインウィンドウの右上 1/4 の部分に [Segmentation (セグメンテーション)] ウィンドウが表示されます。

反ると 地 進む-使用できるスライスを進んだり戻ったりします。メインウィンドウにア クティブなスライス数が表示されます。

編集-「Edit(編集)」モードのオン・オフ切替えを行います。「Edit(編集)」モードでは、ユー ザーがアクティブなスライスの赤紫色のライブワイヤーの輪郭を手動で調整することできます。この ビューでユーザーは青い頂点(シード)を追加したり、削除したり、動かしたりすることができます。

- *左クリック(長押ししてドラッグ)* シードボックスを動かします。
- センタークリック-マウスの位置で新しいシードボックスを作成します。
- 右クリック (シードの上で)- シードボックスを削除します。

伝達 - 前または次のスライスに輪郭がある場合、伝達によって所定のスライスで赤紫色のライ ブワイヤー輪郭が自動的に作成されます。

● 自動伝達オフおよび ● 自動伝達オン - 自動輪郭伝達をオフまたはオンにします。

スライス 40 - サジタルセグメンテーションでスライス番号 40 に進みます(オブリークではス ライス 15)。

ライブワイヤーによる CT スライスのセグメンテーション

Mako セグメンテーション専門医 / Mako 製品専門医

- 青いズームスライダーを使用して、大腿骨コロナルビューで顆部と膝蓋大腿領域の両方が視認できることと、脛骨の結節が視認できることを確認します。
- 2.「Set Bounds (境界を設ける)」を選択したら、右上ペインで目的の骨の辺縁を見つけ、左クリックしてライブワイヤー輪郭作成を開始します。赤紫色のライン(ライブワイヤー)が表示され、骨縁の追跡を試みてカーソルをたどります。
- 輪郭で左クリックができる場合は、カーソルを骨の別の場所に移動します。輪郭を許容できない場合、前のシードにより近い位置を試してみます。良好な位置を見つけられない場合、前の縁の近くの別の場所で縁を左クリックして続行します。輪郭を編集するには、前ページに記載されているツールを使用します。

「Edit (編集)」モードでは、ユーザーがアクティブなスライスの赤紫色のライブワイヤーの輪郭を 手動で調整することできます。マウスを左クリックするとシードが配置され、右クリックすると最 終シードが配置されて輪郭を終了します。真ん中のボタンをクリックすると、最終シードの配置を 削除するか、取り消します。

- 4. ライブワイヤーが骨の 2/3 を囲むまで骨の縁を囲み続けます。
- 5. 最後に置かれたシードで右クリックすると輪郭が終了します。
- 輪郭を見直します。輪郭を補正する必要がある場合、編集ボタンを左クリックします。青いシード が視認できるようになります。輪郭を編集するには、前ページに記載されているツールを使用しま す。
- 7.「自動伝達オン」が有効の場合、「Forward(進む)」または「Prev(戻る)」をクリックすると次の スライスに移動します。アプリケーションにより、隣のスライスからの輪郭に基づくスライスの輪 郭作成が自動的に試みられます。
- 8. 残りのスライスすべてに先の手順を繰り返します。

検討事項:

- 輪郭は骨の解剖学的形状に忠実である必要があります
- 赤紫色のライブワイヤー内に骨棘が含まれています
- 可能な場合、1 枚のスライス内に複数の閉じている輪郭がないようにします
- 不規則な解剖学的特徴を持つ領域内の赤紫色のライブワイヤーの輪郭は単純かつ平滑であるものとします

同じスライスに2つの骨「islands(島)」が表示される場合、2つの個別の輪郭が必要になること があります。「Edit(編集)」モードが有効ではないこと(つまり、青いシードを視認できない)を 確認し、左クリックして同じスライスで第二の輪郭を開きます(右クリックで第二の輪郭が閉じま す)。

画面に希望数を超える輪郭がある場合は、「Clear (クリア)」ボタンを選択する必要があります。こうすることですべての輪郭が削除され、もう一度骨の輪郭を描くことができます。

スライスで複数の輪郭が必要な場合は、スムーズな移行が行えるように、参照として前のスライス を使用します。

同じ位置に複数のシードを置くとモデルの複雑さが増すため、避けてください。「Pre-Planning(事 前計画立案)」ページに表示される輪郭を使用してアーチファクトを特定することができます。輪郭 がゆがんだり不規則である場合、分割されたスライスでの編集を検討します。

輪郭内にループがある場合、どのスライスにループが含まれているのか、輪郭を描き直す必要があることを示すメッセージが表示されます。

脛骨境界内で遠位粗面の撮影に失敗すると、骨位置合わせの精度に悪影響を及ぼします。

CT ランドマーク

CT ランドマーク手順では、インプラント計画立案と骨位置合わせ手順で使用する 8 つの解剖学的骨ラ ンドマークを特定します。

CT ランドマークの選択

Mako セグメンテーション専門医 / Mako 製品専門医

- 1. コントロールパネルから「Hip Center(股関節の中心部」ランドマーク選択します。
- トランスバース、コロナル、およびサジタルビューで該当する位置を見つけ、3ビューすべての該 当する位置でマウスを左クリックして選択します。
- 3. 「Capture Point(撮影ポイント)」を選択します。ランドマークの横の画面にランドマークの位置名 が表示されます。
- 4. 残りのランドマークすべてに先の手順を繰り返します。

内側上顆ポイントは溝(外科的内側上顆)で撮影する必要があります。骨の最端ポイントについて は、外側上顆ポイントのみを撮影する必要があります。

CT ランドマーク

くるぶしのランドマークは、[Patient Landmark(患者ランドマーク]ページを使用する骨位置合わせ プロセス中に触る位置と一致する必要があります。くるぶしのランドマークはコロナル面に平行な 面にないため、コロナル面の最も外側の隆起部に設置しないでください。 Mako TKA アプリケーションユーザーガイド

回転性ランドマークの正しい向きについて:

- a. トランスバースビューで脛骨プラトー周囲が完全に表示されるよう に、脛骨顆最下部の真下のプラトーレベルにコロナルビューの十字 線を設定します。
- b. PCL 挿入の中心を特定し(緻密骨のより明るい領域により証明される)、そこに青い回転バー(ML 軸)の中心を置きます。
- c. 青いバーが脛骨プラトー周囲の後方内側縁に接し、最も後方の外側 脛骨高原周囲から3~4mm ほど空くように(脛骨外側と青い バーの間の間隙)回転ランドマークの向きを合わせます。
- d. コロナルビューの十字線を脛骨結節のレベルまで動かします。
- e. 回転性ランドマークを回転して緑色の矢印が脛骨結節の内側 1/3 と 交差するようにします。

回転性ランドマーク

回転性ランドマーク

回転性ランドマーク

切除ランドマーク

Mako セグメンテーション専門医 / Mako 製品専門医

切除ランドマークは、「Implant Planning(インプラント計画立案)」および「Ligament Balancing(靭帯バランシング)」の各ページで切除の深さ値を計算する際に使用します。このページにはコロナル ビューやトランスバースビューの切除ランドマークが表示され、位置変更ツールが与えられます。 切除ランドマークは分割された骨モデルを基にソフトウェアが自動的に計算します。ただし、その位 置はセグメンテーションアーチファクトの影響を受けていることがあります。先に進む前に、ランド マークが正しい解剖学的位置にあることを必ず確認してください。

CT ランドマークが撮影されるまで 「Resection Landmark (切除ランドマーク)」 ページは無効で す。

CT ランドマークが修正された場合、切除ランドマークは自動的に再計算され、切除ランドマーク の手動変更は上書きされます。

切除ランドマークページ

- Coronal view (コロナルビュー) 選択したランドマークを基にする「Resection Landmark(切除 ランドマーク)」ページに移動した際に表示される初期設定ビュー。大腿骨の遠位内側ランドマー クは初期設定の位置にあり、モデルの上に青い球体として表示されます。その他すべてのランド マークは赤紫色で表示されます。
- Transverse view (トランスバースビュー)-選択したランドマークを基にする「Resection Landmark (切除ランドマーク)」ページに移動した際に表示される初期設定ビュー。大腿骨の遠位 内側ランドマークは初期設定の位置にあり、モデルの上に青い球体として表示されます。その他す べてのランドマークは赤紫色で表示されます。

- Resection Landmark List (切除ランドマークのリスト) 大腿骨および脛骨に使用できるランド マーク。テキストが青色で強調表示されているときランドマークはアクティブです。撮影したラン ドマークは緑色のチェックマークで示されます。
- 4. Capture Button (撮影ボタン) ユーザーが選択したランドマークの位置を撮影します。
- 5. **Reset Landmark Button(ランドマークリセットボタン)** 撮影したランドマークを元の計算位置 にリセットします。

マウスボタンをクリックして動かすことにより骨モデルを移動・回転し、 ランドマークの視認性を向上させることができます。方向のガイドが表示 され、骨モデルの回転を支援します。骨モデルはそれぞれ独立して動きま す。

アクティブな切除ランドマークは青色で表示されます。非アクティブなランドマークは赤紫色です。切除ランドマークの位置を修正する方法:

- 1. 修正を希望するランドマークを選択します。
- 2. 目的の位置で骨モデルクリックし、新しい位置を設定します。
- 3.「Capture (撮影)」をクリックします。

切除ランドマークを元の計算位置に戻す方法:

- 1. リセットを希望するランドマークを選択します。
- 2. 「Reset Landmark (ランドマークのリセット)」をクリックします。

配向ガイド

術前計画立案

Mako セグメンテーション専門医 / Mako 製品専門医 / 外科医

「術前計画立案」手順では、選択したインプラントシステムのインプラントコンポーネントのサイズを 決定し、最初に位置に置きます。

本セクションに記載するツールの適用方法については、該当する Mako TKA *手術ガイドを参照して* ください。

インプラント計画立案の機能

インプラントシステムボタン - ユーザーがインプラントシステムを変更 できるようにします。詳細については、*「Patient Information(患者情 報)」*セクションを参照してください。

サイズ参照 - それぞれ前方または後方大腿骨で「Femur Ant. (大腿骨の前)」または「Femur Post. (大腿骨の後」のいずれかを選択することができるドロップダウンリスト。

インプラントのサイズ決定ボタン - これらのボタンでは、大腿骨、脛骨、 およびポリ厚のプラス記号(サイズを上げる)またはマイナス記号(サ イズを下げる)を選択してインプラントコンポーネントのサイズを調整 します。

アプリケーションソフトウェアでは、適合しないサイズでの計画 は許可されません。

Capture points(撮影ポイント)ドロップダウン - 外科医は選択した骨のポイントを撮影し、探針を追跡することができます。

インプラント計画立案の機能

Capture (撮影) - このボタンを有効にすると、ユーザーは探針の先端で インプラント ポイントを撮影することができます。

Delete(削除) - このボタンを有効にすると、ユーザーは選択した骨から撮影したポイントを削除することができます。

「Implant Planning(インプラント計画立案)」パネルの左側に表示される切り替えボタンは、アイコン を左クリックしてオン / オフにすることができます。ボタンを有効にすると、アイコンの周りに緑色の 縁取りが表示されます。

取り消し - 所定のコンポーネントの直前のインプラント移動を削除し、インプラント(大腿骨 / 脛骨)やポリの変更履歴追跡を維持します。「Implant Planning(インプラント計画立案)」ペー ジ終了後か、インプラントシステムファミリーを変更した場合、取り消し履歴は失われます。

インプラントの位置決め-すべてのビューでインプラント位置決めボタンが表示されます。

インプラント - アクティブなとき、すべてのインプラントコンポーネントモデルが3次元 ビューで表示されます。

切除ビュー - 計画した切除領域のビューが表示され、仮想切除ビューを有効にします。アク ティブなとき、スライサー・ビュー・アイコンは使用できません。

-9

スライサービュー - 3 次元骨モデル上に重ね配置された CT スライスが表示されます。アク ティブなとき、切除ビューアイコンは使用できません。

PCA(後顆軸)表示 - アクティブなとき、大腿骨トランスバースビューでの PCA について は、大腿骨コンポーネントの軸回転値と共に後顆軸(PCA)が表示されます。

ポイントマッピング-3Dビューで撮影したすべてのポイントが表示され、選択されている場合は大腿骨と脛骨のすべてのポイントが示されます。撮影したポイントはモデル上で黄色の 球体で表現されます。

切除深さポイント - 切除の深さ値が計算される骨上の選択したポイントが表示されます。切除 ポイントはモデル上で赤紫色の球体で表現されます

インプラント計画立案ページ

- 1. **3D ビュー骨モデル** コロナル、トランスバース、サジタルビュー。
- スライダーバー スライダーを使用して画像やモデルの拡大表示、コントラスト、明るさを調整することができます。
- 3. アイコン インプラント計画立案で使用できるアイコン。
- 4. インプラントの角度ラベル トランスバース大腿骨 3D ビューの上のインプラント位置決めボタン の左に顆部角度が表示されます。
- 1. 十字線 このカーソルはインプラント回転のピボットポイントとして、また距離測定のマーカー (内径 = 2 mm、外径 = 4 mm)として機能します。ウィンドウの内側で左クリックするとカーソル が移動します。

- 6. **切除の深さラベル**-コロナルおよびトランスバースパネルには、大腿骨および脛骨切除の深さラベルが表示されます。
- 7. インプラント位置決めボタン インプラント計画立案の位置決めボタンは、意図するインプラントの調整方向を示す矢印付きの灰色のボタンとして表示されます。

値を入力して旋回角度値(内反/外反、内旋/外旋、屈曲/伸展、後傾)を設定すると、アプリケー ションがその他の角度により制約が適用されることが分かっている場所に一番近くて可能な場所を 計算します。そのため、表示される角度が必ずしも入力した値と一致するとは限りません。旋回値 を入力して許容できない結果になる場合、「Undo(取り消し)」ボタンを使用してインプラントコ ンポーネントを前の位置に戻します。

患者計画の完了

Mako 製品専門医 (MPS) のラップトップで「Pre-Operative Planning (術前計画立案)」手順が完了す ると、ラップトップから患者計画をエクスポートしてガイダンスモジュールにインポートする調製が 整います。詳細については、本マニュアルの「*患者計画のエクスポート (MPS ラップトップのみ)」* セクションを参照してください。計画は外科医により見直され、術中計画の期間中に外科医が最終的 に承認します。 Mako TKA アプリケーションユーザーガイド

MAKO TKA ワークフロー

以下の指示は、Mako TKA 治療を完了するために手術室で必要とされるワークフローに適用されます。 設定および患者計画(前述のように)の完了にはこのポイントを超えて続行することが必要とされま す。フットペダルを使用すると、MPS が参加しなくてもアプリケーション内の特定のボタンを有効に することができます。以下の表には、Mako TKA ワークフローのステップとフットペダルを使用でき る場面が表示されています。

すべてのワークフローで使用できるページのすべてを一覧表示します。ページの具体的なリストと その順序は、Surgeon Preferences (外科医の優先設定)に左右されます。

TKA アプリケーションのステップ	フットペダル
探針チェック	該当なし
RIO の設定	該当なし
RIO 位置合わせ	開始 / 再開 検証の開始
患者のタイムアウト	該当なし
患者ランドマーク	撮影
チェックポイント	撮影 検証する
骨の位置合わせ	撮影 検証する
関節のバランシング	該当なし
インプラント計画立案	撮影
靭帯バランシング	 該当なし
骨の調製	該当なし

ロボットアームの術前チェック

探針チェック

Mako (MAKOplasty) TKA アプリケーション手術の精度を確保するためには、探針の精度をチェック する必要があります。膝関節のエンド・エフェクタ・アレイと探針が視認でき、探針の先端が膝関節 のエンド・エフェクタ・アレイのディボットに挿入されている場合、アプリケーションは探針の検証 を実施します。器具がカメラから見えない場合、器具は灰色に表示されます。

探針チェック

Mako 製品専門医 / 滅菌された職員

- 1. シャープ探針(青色)やブラント探針(緑色)の物理的完全性をチェックし、VIZADISC が正しく 装着されていることを確認します。
- すべての VIZADISC の視野が遮られず、直視が得られるように、カメラ視野内で膝関節のエンド・ エフェクタ・アレイとブラント探針の方向を合わせてください。両アレイの「正面」をカメラの正 面と平行にしてください。
- ・
 ・
 エフェクタ・アレイのディボット内に探針チップを完全に着座させ、探針をしっ
 かり固定させてください。
- 4. アプリケーションは自動的に探針チェックを開始し、正常に検証されると自動続行します。
- 5. シャープ探針でも先の手順を繰り返します。

探針検証に繰り返し失敗する場合は、探針の欠陥、VIZADISC の不正装着、VIZADISC の欠陥、 または不正なカメラ位置を示していることがあります。

骨アレイの配置(大腿骨および脛骨)

外科医 / 滅菌された職員

整形外科の文献では、骨ピンを使用すると骨ピン部位の近くで骨折するリスクが上がることが示さ れています。

参考文献:

- 1. Li C, Chen T, Su Y, Shao P, Lee K, Chen W. Periprosthetic femoral supracondylar fracture after total knee arthroplasty with navigation system. The Journal of Arthroplasty. 2006;12:049.
- 2. Hoke D, Jafari S, Orozco F, Ong A. Tibial shaft stress fractures resulting from placement of navigation tracker pins. The Journal of Arthroplasty. 2011; 26:3.
- 3. Jung H, Jung Y, Song K, Park S, Lee J. Fractures associated with computer-navigated total knee arthroplasty. The Journal of Bone and Joint Surgery [BR]. 2007;89:2280-4.
- Nogler M, Maurer H, Wimmer C, Gegenhuber C, Bach C, Krismer M. Knee pain caused by a fiducial marker in the medial femoral condyle. Acta Orthop Scand. 2001;72 (5):477-480.
- 5. Wysocki R, Sheinkop M, Virkus W, Della Valle C. Femoral fracture through a previous pin site after computer-assisted total knee arthroplasty. The Journal of Arthroplasty. 2007;03:019.

大腿骨や脛骨ではアレイクランプの構成ごとに2本の骨ピンが必要です。

- 4.0 mm 骨ピンには、四角ドリルアダプターを使用します。
- 3.2 mm 骨ピンには、ピンドライバ(付属しません)を使用します。

「Bone Preparation (骨の調製)」中には、不慮の切除を回避するため、骨ピンを切除面から離して 留置してください。

4.0 mm または 3.2 mm の骨ピンを挿入するには、ピンドライバ (付属しません) を使用することが できます。

サージカルドリルには、四角ドリルアダプターを併用することができます。

更なる切開のトラッキングについては、骨ピンは、骨の表面に対して垂直に挿入してください。挿 入・除去中には、ピンの方向を 変えたりねじったりしないでください。

血管構造や軟部組織への損傷を防止するため、骨ピンが骨の反対側の皮質まで入り込んでいないこ とを確認してください。

骨ピンの操作に使用する電動ツールが「reamer (リーマー)」のスピードではなく、「drill (ドリル)」スピードに設定されていることを確認してください。

Stryker 骨ピンはセルフドリリングで、セルフタッピングですが、極端に硬い骨には、骨の事前ド リル操作が必要なことがあります。骨ピンのネジ山の最小径に近いドリルサイズを選択してくださ い。

骨切除中にアレイがロボットアームや切断システムを妨害したりこれらに衝突したりしないように 骨ピンを配置してください。

骨ピンの挿入(脛骨のみ)

外科医 / 滅菌された職員

アレイスタビライザーを正しく使用するために、必ず3.2 mm のアレイスタビライザーには 3.2 mm 径の骨ピンのみを、4.0 mm のアレイスタビライザーには4.0 mm 径の骨ピンのみを使用し てください。骨ピン径の選択は、患者変数や外科医の手技に基づく手術担当医の判断に委ねます。

- 1. 外科用メスで脛骨結節の 100 mm(約4 横指径)以上下で、脛骨突起の 10 ~ 15 mm 内側の皮膚か ら筋膜へと切開を入れます。
- 以下のいずれかの方法に従って、2番目の 切開を完了することができます。
 - a. 2番目の穿刺切開は前の切開から約
 15 mm 遠位に入れます。
 - b. または、最初の切開からアレイスタビラ イザーの最近位のスリーブを配置し、遠 位スリーブが皮膚にかかるところに切開 を入れます。
- 両切開部からアレイスタビライザーを完全 に着座させ、バレルが骨の表面に接するようにします。
- 2. 脛骨の表面に対して直角になる角度で(矢状正中 線から約45°)、骨ピンを第一皮質骨から通し、第 二皮質骨に刺します。
- アレイスタビライザーを定位置に置き、2本目の 骨ピンを第一皮質骨から通し、第二皮質骨に刺し ます。

骨ピンの挿入(大腿骨のみ、切開外)

外科医 / 滅菌された職員

アレイスタビライザーを正しく使用するために、必ず3.2 mm のアレイスタビライザーには 3.2 mm 径の骨ピンのみを、4.0 mm のアレイスタビライザーには4.0 mm 径の骨ピンのみを使用し てください。骨ピン径の選択は、患者変数や外科医の手技に基づく手術担当医の判断に委ねます。

- 1. 膝関節を 90°を超えて屈曲させ、大腿四頭筋を引き延ばします。
- 外科用メスで滑車溝底部(または膝蓋骨の上縁) に約 80 ~ 100 mm(約3~4 横指径)近位で、 矢状正中線の約 45°内側の皮膚から筋膜へと切開 を入れます。

ピン切開の前に膝蓋骨を少し脱臼させます。

骨ピンを正中線の約45°内側に配置すると、膝を曲げたときに圧を加えて骨ピンを移動させる可能性のある大腿四頭筋群の「spearing(突き進み)」が回避されます。

術後の大腿骨疲労骨折のリスクを最小限にするため、大腿骨骨ピンを大腿骨の骨幹に刺し込まない でください。

- 3. 以下のいずれかの方法に従って、2番目の 切開を完了することができます。
 - a. 2番目の穿刺切開は前の切開から約
 15mm近位に入れます。
 - b. または、最初の切開からアレイスタビラ イザーの最近位のスリーブを配置し、近 位スリーブが皮膚にかかるところに切開 を入れます。
- 両切開部からアレイスタビライザーを完全 に着座させ、バレルが骨の表面に接するようにします。

- 5. 骨ピンを第一皮質骨から通し、第二皮質骨に刺します。
- 6. アレイスタビライザーを定位置に置き、2本目の骨ピンを第一皮質骨から通し、第二皮質骨に刺し ます。

骨ピンの挿入(大腿骨のみ、切開内)

外科医 / 滅菌された職員

アレイスタビライザーを正しく使用するために、必ず3.2 mm のアレイスタビライザーには3.2 mm 径の骨ピンのみを、4.0 mm のアレイスタビライザーには4.0 mm 径の骨ピンのみを使用してくださ い。骨ピン径の選択は、患者変数や外科医の手技に基づく手術担当医の判断に委ねます。

切開内骨ピン刺入テクニックに Stryker Leg Positioner Self-Retraction System を使用する場合、妨 害が起こらないように、大腿骨アレイを配置する前にブーツにアントラーズを配置することをお勧 めします。

 遠位第一骨ピンの先端を内側上顆最突出点 の約 10 ~ 20 mm 前、10 ~ 20 mm 上に配 置します。大腿骨 PS ボックスを避けるた め (PS を選択する場合)、AP 方向の配置が 大腿骨サジタルシャフトの中央・近位に位 置するようにします。

- 7. 骨ピンの向きを横方向面(近位でも遠位方向でもない)にし、骨ピンの角度を大腿骨骨幹部の後外側皮質骨(外側上顆の前)に対して後方に約0~15°以下にします。
- 両皮質の足場が得られるまで第一ピンを刺し込みます。
- バレルが骨に完全に着座するまで、適切な 大きさのショート・アレイ・スタビライ ザーを骨ピン上にスライドさせます。遠位 大腿骨皮質辺縁は大きく離れているため、 残りの露出ピンの長さはショート・アレ イ・スタビライザーだけに適合します。

ピンを水平方向ではなくより垂直方向に配置すると、神経血管損傷を招くおそれがあるため避けて ください。

- オープン・ショート・アレイ・スタビライ ザーのバレルを第一骨ピンの近位に向け、 第二の骨ピンが大腿骨骨幹部中央部(第一 ピンの約0~30°前)に入り、大腿骨骨幹 部の後外側皮質骨の前に出るようにして前 方にロックします。
- ショートアレイスタビライザーを定位置に 置き、両皮質の足場が得られるまで第二の ピンを刺し込みます。

アレイセンブリ(大腿骨および脛骨)

外科医 / 滅菌された職員

1. 骨盤アレイアダプターと2ピンクランプを大まかに組み立てます。

アレイアセンブリ(左膝と右膝)

- 9. 骨ピン上にクランプをスライドさせ、アレイスタビライザーの最上部を背にクランプを着座させます。クランプのネジ先がカメラから離れたところを指し、骨盤アレイアダプターのネジ先が切開部から離れるようにしてアセンブリの方向を決めます。
- 3. 膝関節大腿骨アレイを骨盤アレイアダプターに取り付けます。
- 4. アレイを希望の場所に配置します。
- 5. 四角ドライバーを使用し、以下の順序でネジをしっかり締めます。
 - a. アレイのネジ
 - b. 骨盤アレイアダプターのネジ
 - c. クランプのネジ

クランプのネジを最後に締めることが重要です。別のネジ(特にアレイのネジ)を最後に締める と、掛けられたトルクにより骨ピンが少しひねられ、締められたクランプがこの向きでピンを保持 できるようになります。骨切除により生ずる振動がピンを中間位置に戻し、骨位置合わせエラーを 生じさせるおそれがあります。

アセンブリ中に骨にかかるトルク量を低減するため、3 つのつまみネジを締めている時にアレイア センブリを動かさないでください。

- 6. アセンブリがしっかりしていることを確認してください。
- 7. 膝関節脛骨アレイにも手順1~6を繰り返してください。

膝関節脛骨アレイと膝関節大腿骨アレイ同士、サジタル面、およびカメラと平行になるように、ア レイのアライメントを行ってください。こうすることにより、可動域全体でアレイを視認できま す。

治療中の骨位置合わせ喪失を防ぐために、アレイアセンブリ内の接続は並んでいる鋸歯状の縁に正 しく噛み合うように合わせる必要があります。左の図は適切な組立て、右の画像は不適切な組立て を示しています。

適切な組み立て

8. 右の図は、切開外 TKA 処置用骨ピンおよびアレ イの完全組立てを示しています。

不適切な組み立て

9. 右の図は、切開内 TKA 処置用骨ピンおよびアレ イの完全組立てを示しています。

ロボットアーム・ベース・アレイの配置および向き

外科医 / 滅菌された職員 / Mako 製品専門医

以下の手順は本マニュアルの「Preparing the RIO (RIO の調製)」手順ですが、ドレーピングの前 に Mako 製品専門医 (MPS) が最もよく行う作業です。ドレーピング後に滅菌された職員が以下の 手順を行ってもかまいませんが、ドレープの無菌バリアを損ねないようにする必要があります。

ベース・アレイ・アームの位置決めを正しく行うと、ドレーピング後の調整が最小で済むか、調整 の必要がなくなるため、無菌バリアが損なわれるリスクが軽減されます。

- 以下に示すように、ベース・アレイ・アームをしっかり配置し、向きを決め、ロックします。
 a. ベース・アレイ・アームの肘が患者の頭側を
 - 向くように配置します。

 b. ベース・アレイ・コネクターは Mako のセン ターラインから患者の頭側に 0 ~ 2°インチの 所にあります。

Mako のセンターラインは、ロボットアーム のベースを左右対称の半分に等分する中央平 面 (Mako の片側の長いサイドパネルに平行) として定義します。

 c. ベース・アレイ・コネクターは、ロボット アームのカバーシェルの最上部と同じ高さで す(ほぼ胸の高さ)。

- d. ベース・アレイ・コネクターは、前の手順に 記載される Mako のカバーシェルの約5インチ前方にあります。
- e. ベース・アレイ・コネクターは、後のベースアレイの組立てが膝関節の中央にほぼ一致するサジタル面で行われるように、カメラの方向に向いています。
- 手術中にロボットアームベースアレイが膝関節大腿骨アレイを妨害しないことを確認するため、全 可動域にわたって患者の下肢を動かします。

「RIO 位置合わせ」前はいつでもロボットアームベースアレイの位置調整を行えます。この位置合わせ完了後にアレイを移動すると、システムの精度が低下します。この場合はロボットアームの再位置合わせが必要になります。

「ベースアレイが膝の中央から遠すぎます」という警告メッセージが表示された場合、ベースと骨 アレイが近づくように再調整することをユーザーに助言しています。これは、ロボットアームベー スアレイ、ロボットアーム、または手術室のベッドを動かして調整することができます。

このメッセージは、「骨位置合わせ」で収集したデータを用いてシステムがアレイ間の距離を計算 するため、「骨の調製」ページでも表示されます。アレイを再調整すると(患者の下肢を動かすか、 ロボットアームベースアレイを調整してロボットアームの再位置合わせを行い)、問題を修正し、 ユーザーが骨切除を完了できるようになります。

骨切除中にロボットアームベースアレイが膝関節大腿骨アレイの追跡を妨害することがあります。 これを回避するため、下肢を屈曲させ、膝関節大腿骨とロボットアームベースアレイがカメラから 見えることを確認してください。

カメラ視野の調整

Mako 製品専門医

- 1. 「Options (オプション)」メニューまたは 「Camera View (カメラ視野)」 ツールバーから 「Camera View (カメラ視野)」 ウィンドウを開きます。
- カメラのレーザーアラインメントボタンを押し、レーザーアラインメント機能を有効にします。90
 度屈曲位で患者の膝にレーザー光線が当たります。

外科医

 屈曲から伸展までの最大可動域にわたって患者の下肢を動かし、カメラが 各アレイを検出することを確認します。必要に応じて、アレイの前面が下 肢屈曲時の 2D 面に平行になるようにアレイの向きを変更します。

アレイを視認できない場合、またはカメラ視野内で最適ではない向きの 場合、塗りつぶし円が点線円または空円になります。カメラまたは患者 の位置を調整してアレイが見えるようにします。

手術室の配置

以下に示す手術室の配置シナリオは、ロボットアームを患者の右側または左側に配置した Mako システムの全コンポーネントの配置を描いています。

Mako は施術側のみに配置することができます。右膝の場合は Mako を右に配置し、左膝の場合は Mako を左に配置します。

手術室の配置(左膝と右膝)

外科医、手術スタッフ、患者が怪我をしないように、切断ツールを使用していないときには安全な 場所に移動してください。切断ツールがハイリスク領域(上の三角形領域)に置かれている場合、 チャイムが鳴ってユーザーに切断ツールの移動を促します。

手術室の構成

アレイはカメラに平行な面に置いてください。アレイがカメラの視野に入るように、カメラはアレイ と直接真向かいにする必要があります。

RIO の設定

Mako 製品専門医

1. ロボットアームベースアレイを股関節中心位置の周囲において、施術側の手術台から約3~5フィートの所に Makoを配置します。

外科医

- 2. ロボットアームをアライメントゾーンに動かします。
- MICS ハンドピースのトリガーを長押しします。ロボット アームは制限された経路に沿って「Setup(設定)」位置ま で移動し、Progress Bar(進行状況バー)が100%になる と停止します。表示画像は選択した施術側(右/左)に よって変わります。
- 4. 「Setup (設定)」 位置に到達すると、アプリケーションが自動的に「Final Setup (最終設定)」 ページに進みます。
- 「Final Setup (最終設定)」ページで「Free (フリー)」ボタンを押すと、アームの拘束が解除され、自由に動かすことができます。ここで MICS ハンドピースのトリガーが有効になり、必要に応じて再び処理を開始します。
- 施術側の下肢を90°度に屈曲させます。股関節、膝、および足首関節のすべてがサジタル面に入るように(床に垂直)膝を傾けます。

- 7. 右の図に示すように、手術台と Mako の間が約2横指径に なる位置に Mako を移動します。

- Mako が手術台に対して 90 度になるよう配置を続行 し、ロボットアームベースアレイが膝の中央と同じサ ジタル面になり、カメラに対して真っすぐに障害物の ないラインに来るようにして患者の股関節の周囲に配 置します。MICS ハンドピースのハンドルは膝の中央 の少なくとも拳の幅の直上に置きます。
- 「RIO Setup (RIO の設定)」を確認し、ロボットアームを床に着座させたら、右矢印を選択します。
- 10. 手術台の高さを調整し、MICS ハンドピースのハンド ルが膝の中央ポイント(理想的な手術中央)から約
 100 mm(4 インチ、または拳一つの幅)離れていることを確認します。

膝の中央ポイントを囲む領域で骨切除を行いま す。

必要ならば、「Bone Preparation (骨の調製)」 ま で Mako を手術台から離してしておくことができ ます。RIO Registration (RIO 位置合わせ)」完了 後、電動アライメントを繰り返し、e ブレーキを かけてアームを設定位置にロックし、Mako を手 術台から離します。

Mako リフト機構が下げられていて、Mako が下肢の上まで下がっていることを確認し てください。Mako が下肢部上まで下げられていない場合は、メインウィンドウにアイ コンが表示されます。

- 11. 手術中にロボットアームベースアレイがアレイの追跡を妨害しないことを確認するため、全可動域 にわたって患者の下肢を動かします。
- 12.「RIO Setup (RIO の設定)」を確認したら、「Next (次へ)」を選択します。
- 13. 「Bone Registration (骨位置合わせ)」と「RIO Registration (RIO 位置合わせ)」手順を完了したら、「RIO Setup (RIO の設定)」のリアルタイム値が表示されます。

「RIO 位置合わせ」

「RIO 位置合わせ」手順では、ロボットアームの精度と切断システムの場所を確かめます。

「RIO 位置合わせ」の前に MICS ハンドピースをロボットアームに接続する必要があります。これ を行わないと、「Bone Preparation (骨の調製)」ページで切断システムが開始されなくなるおそれ があります。「RIO 位置合わせ」は、骨切除中にロボットアームが使用される位置および向きで開 始する必要があります。

Mako リフト機構が下げられていて、Mako が下肢の上まで下がっていることを確認して ください。Mako が下肢部上まで下げられていない場合は、メインウィンドウにアイコ ンが表示されます。

先に進む前に、ロボットアームベースアレイのアームが本マニュアルの「ロボットアーム・ベー ス・アレイの配置および向き」 セクションに記載されているとおりに位置し、方向づけられ、固定 されていることを確認します。

Mako 製品専門医

- 1. 「RIO Registration (RIO 位置合わせ)」ページに移動します。
- MICS ハンドピースのシリアル番号は自動的に Mako にアップロードされます。正常にアップロードされると、MICS のシリアル番号が灰色のテキストで表示されます。ただし、アップロードされない場合は以下の手順に従ってください。
 - ドロップダウンリストから MICS ハンドピースのシリアル番号を選択します。
 - 「Options (オプション)」メニューから「Reset Cutter (カッターのリセット)」オプションを選択 します。

術中に MICS ハンドピースを交換する場合、本マニュアルの「MICS ハンドピースの電源がオンに ならない」セクションを参照してトラブルシューティング時の提案をお読みください。

3. 外科医がロボットアームを正しい向きに配置し、膝関節のエンド・エフェクタ・アレイが視野に 入ったら、「Start (開始)」を選択します。 外科医

- 1. 「RIO 位置合わせ」ツールが MICS ハンドピースに正しく固定されていることを確認します。膝関節のエンド・エフェクタ・アレイを「RIO 位置合わせ」ツールに装着し、つまみネジを締めます。
- 2. 膝を 90 度屈曲にして、膝の中央位置を記します。
 伸展位で下肢を固定します。

最良の結果を得るために、2 横指径 (50 mm) 下で、MICS のハンドルの最下部より2 横指 径 (50 mm) 前に位置する間隙の間の点を記 します。記したその位置に膝関節のエン ド・エフェクタ・アレイの中心を置き、 RIO 位置合わせを開始します。

 ロボットアームと膝関節のエンド・エフェクタ・ アレイを先に記した膝の中央に移動し、膝関節のエンド・ エフェクタ・アレイがカメラと平行になっていることを確 認します。

RIO 位置合わせ

「RIO 位置合わせ」は、切断中にロボットアームが置かれる位置および向きで開始する必要があり ます。

外科医

- ソフトウェアのメッセージに従って MICS ハンドピースを 目的の仮想位置までゆっくり移動し、2回目のビープ音が 鳴るまで保持します。最良の結果を得るために、膝関節の エンド・エフェクタ・アレイがカメラの方を向き、サジタ ル面に平行であることを確認します。
- 8 つのポイントのすべてが撮影されるまで繰り返します。
 エラー許容範囲が閾値以内なら、ソフトウェアは検証手順 へ進みます。

RIO 位置合わせ立方体

Mako 製品専門医/外科医

1. 検証手順1:「RIO Registration (RIO 位置合わせ)」を検 証するには、MICS ハンドピースと膝関節のエンド・エ フェクタ・アレイを床に向けて下向きにし、「Start Verification(検証開始)」を選択します。カメラが膝関節の エンド・エフェクタ・アレイをはっきりと捉えていること を確認します。検証点はソフトウェア内で自動的に撮影さ れ、検証 手順2に進みます。

RIO 位置合わせ検証の手順1

アレイが視認できる場合はソフトウェアが自動的に検証を続けます。画面上の至適停止画像と一致 させるために停止する必要はありません。

- 2. 検証手順2:メッセージが表示されたら、ロボットアーム の手首を 120°以上回します。カメラが膝関節のエンド・ エフェクタ・アレイの VIZADISC を連続的にはっきりと捉 えていることを確認します。右に示される回転角度によ り、手首の回転進行が追跡されます。その角度が 120 度に なるか、これを超え、アームがしっかり固定されると、第 二の検証が行われます。
- 3. 検証に失敗した場合、「RIO 位置合わせ」ツールが MICS ハンドピースにロックされ、膝関節のエンド・エフェク タ・アレイが完全に着座していることを確認します。ペー ジを終了し、再度表示して「RIO Registration (RIO 位置) 合わせ)」を再度行います。そうすると、「Start (開始)」 ボタンは「Restart(再開)」ボタンとして表示されます。

「RIO 位置合わせ」検証の手順2

最初に停止した場所により、一方向で動きの範囲が妨げられることがあります。この場合、アーム を120度以上別の方向に回転させ、第二停止を収集します。

4. RIO 位置合わせに成功すると、「RIO Registration Verified (RIO 位置合わせ検証済み」と表示されます。

検証手順中に膝関節のエンド・エフェクタ・アレイが カメラの視野から外れた場合、「Restart (再開)」を選 択します。ロボットアームと膝関節のエンド・エフェ クタ・アレイを検証 手順1の開始位置に戻し、 「Restart (再開)」ダイアログボックスで「Continue (続ける)」を選択します。

アレイの取り外し

5. ロボットアームから膝関節のエンド・エフェクタ・アレイ を取り外します。「RIO Registration (RIO 位置合わせ)」 で「Page Auto Advance Preference(ページ自動移優先設定)」が有効の場合、「Remove Array(ア レイの取り外し)」画像は短く表示されるか、まったく表示されず、ソフトウェアが自動的に次の 手順に進みます。

「Bone Preparation (骨の調製)」中にのみ Mako を手術台の横に置くのを好む外科医もいます。こ のワークフローに合わせるには、「RIO Setup (RIO の設定)」に戻り、電動アライメントを繰り返 し、e ブレーキをかけてアームを設定位置にロックし、Mako を手術台から離します。

位置合わせ成功後、アプリケーションは自動的に切断システムを再開します。この処理には数秒間 かかることがあります。

最初の位置合わせに合格後2番目の位置合わせが必要な場合、「Restart (再開)」ボタンを選択して 確認します。

患者のタイムアウトページ

「Patient Time-Out (患者のタイムアウト)」ページでは、登録と切除が始まる前に、患者情報の最終確認と手術前計画の承諾が可能です。

次に進むには、「Agree (同意する)」ボタンを選択する必要があります。

tryker	Case Planning	Pre-Op RIO Check	Bone Registration	Intra-Op Planning	Bone Preparation	Case Completion		Default 👔		
		D	otior	.+ Tir	~ 0					
		r	aller		ne O	ut				
		Patient Name:		SAW	BONE KNEE LEF	т				
		Patient ID:		0611	2010					
		Operative Side	:	Left						
		Implant System	1:	Triat	hlon® CR Crucif	orm				
L	TO BE COMPLETED BY THE ATTENDING PHYSICIAN: I validate and accept all planning that is recorded for this procedure. I have read and understand the MAKOplasty® Surgical Technique for the selected implant system. 									
				Agree						
							<	Patient Time Out		

タイムアウトページ

臨床「Time Out(タイムアウト)] では、患者の名前と術側を確認してください。

骨位置合わせ

患者ランドマーク

Mako 製品専門医

- 1. 「Patient Landmarks (患者ランドマーク)」ページに移動します。
- Patient Landmarks(患者ランドマーク)」ページで「Hip Center(股関節中心位置)」を選択して「Capture(撮影)」ボタンを押します。メインウィンドウの下の進行状況バーがアクティブになります。

外科医

 カメラから膝関節大腿骨アレイが見えるようにして、画面のデータ収集進行状況が 100% に達する まで、股関節の可動域限界越えないようにして展開らせん運動で、股関節を中心に下肢を回転させ ます。測定値が許容域内であれば精度測定値が表示されますが、そうでない場合、ユーザーは次の ページに進めないことがあります。

患者ランドマーク

「Hip Center (股関節中心位置)」収集中に骨盤を固定することにより、股関節の内側 / 外側への動きを低減して精度を向上させます。

「Hip Center (股関節中心位置)」収集中にカメラを動かさないでください。いかなる動きも股関節 中心位置の計算を誤らせます。

「Hip Center (股関節中心位置)」の収集中に膝関節大腿骨アレイが外れたり動いたりすると、計算 エラーを招くおそれがあります。「Hip Center (股関節中心位置)」の収集中に膝関節大腿骨アレイ が不明瞭になると、大腿骨ポーズの収集が遅くなります。 Mako TKA アプリケーションユーザーガイド

残りのランドマークの撮影

Mako 製品専門医

- 1. サイドメニューで次のランドマークを選択します。
- 2. 外科医が探針を適切に留置してある場合、「Capture(撮影)」ボタン選択してブラント探針(緑色) で収集を開始します。

外科医

3. 探針と対応する骨アレイがカメラから見える状態で、施術側に示されている解剖学的位置でブラン ト探針の先端を保持します。

システムが各ランドマークを収集し終えるまで、骨から探針チップを取り除かないでください。

外科医 / Mako 製品専門医

4. 残りのランドマークすべてに先の手順を繰り返します。

ランドマークを選択して「Clear Landmark(ランドマークのクリア」ボタンを押した後、 「Capture (撮影)」ボタンを選択してランドマークを再撮影することにより、ランドマークを取り 消して再撮影することができます。

チェックポイントの植込みと初期化

チェックポイントと初期化

Mako 製品専門医

1. Checkpoints (チェックポイント)ページに移動します。

外科医

2. チェックポイントとチェックポイントドライバーを読み込み、以下の位置で大腿骨と脛骨に取り込みます。

大腿骨:内側上顆に隣接する内側顆の内側、内側上顆の最突出点から約10mm前方、灰色の骨領 域の黒い点線で示される最も近い大腿骨切除部から10mm離れたところ。チェックポイントを遠 位の方向に向けます。内側縁沿いの骨棘がチェックポイント探査のための遠位アプローチを妨げる 場合、除去します。チェックポイントが硬骨に設置されていることを確認します。 脛骨:脛骨結節近くの前方中心および灰色の骨領域の黒い点線で示される脛骨切除部から約 10mm離れたところ。チェックポイントが硬骨に設置されていることを確認します。

膝蓋靭帯や軟部組織があるため、計画した切除部の外側へのチェックポイント留置は行えないこと があります。

「骨の準備」中に不慮の切除を防止するため、チェックポイントは切除面からある程度離して留置 します。チェックポイントが計画した切除部に近すぎるような場合は、警告メッセージが表示され ます。

続行する前に、チェックポイントが計画されているインプラント用切除部を妨げないことを確認し ます。 ブラント探針(緑色)を使用して、大腿骨チェックポイントディボット内に先端を真っすぐに配置します。

Mako 製品専門医 / 外科医

Surgeon Preferences(外科医の優先設定)で選択された「Checkpoint Sequence(チェックポイントの順序)」に応じて、システムはユーザーが大腿骨の撮影と検証ができるように自動移動します。脛骨でも同じ手順を繰り返すか、大腿骨と脛骨を撮影した後両チェックポイントの検証を行います。

「Capture/Verify femur (大腿骨の撮影 / 検証)」および「Capture/Verify tibia (脛骨の撮影 / 検証)」 優先設定を選択した場合、ディボットから探針を外し、「撮影と検証」手順間で同じ向きになるよ う置き換える必要があります。

アプリケーションは探針が静止するまでチェックポイントを収集しません。探針が動いていて、 「Capture (撮影)」ボタンが押された後5秒間カメラから見えない時は、システムがエラーメッ セージを表示します。必ず撮影を繰り返してください。

軟骨があるか、または金属製チェックポイントの安定性が疑問視される患者では、金属の代わりに 骨上の解剖学的チェックポイントを撮影することができます。解剖学的チェックポイントに明確な 印をつけ、アクセスできるようにします。「Check Points (チェックポイント)」ページで「Bone (骨)」ボタンを選択します。骨のチェックポイントは金属製チェックポイントよりは潜在的に正確 性に劣ります。「Bone (骨)」または「Metal (金属製)」のいずれかを選択しますが、両方を選択 することはできません。

軟性の骨では、先に進む前にチェックポイントの安定性をチェックします。安定していないチェッ クポイントは動くため、不正確な参照点となるおそれがあります。

「Bone Registration (骨位置合わせ)」ページに進むには、チェックポイントを撮影する必要があり ます。

骨位置合わせ:大腿骨および脛骨

Mako 製品専門医 / 外科医

- 1. 「Bone Registration (骨位置合わせ)」ページに移動し、「Femur (大腿骨)」を選択します。
- 膝を適宜屈曲させるか伸展させて、さまざまな位置合わせポイントにアクセスし、示されているようにより大きな青色の球体から始まる骨上にシャープ探針の先端(青色)(アクティブなポイントの色と一致する)を配置できるようにします。シャープ探針の先端を軟骨組織から骨の表面まで到達させます。
- 3. Mako 製品専門医 (MPS) は「Capture (撮影)」を選択してポイント収集を開始します。
- 4.「Capture(撮影)」ボタンの選択を続行して、残りの各位置合わせポイントを収集します。別の方法では、フットペダルを使用して位置合わせポイントを撮影することができます。ポイント収集の確認音が聞こえるまで、ポイントごとに探針をしっかり保持します。メインウィンドウの下に進行状況バーが表示されます。

骨位置合わせ

0.5 mm 未満の場所で2 つのポイントが撮影されるか、ポイントを撮影中に探針が動いた場合、最終ポイントを再撮影するかについてユーザーに尋ねるメッセージが表示されます。

骨位置合わせの検討事項

骨棘が除去された場合、新たに切除した表面上でポイントを収集する位置合わせを試みないでください。

ポイントは、画面に示される骨の位置に相当し、骨表面で直接収集されなければなりません。ポイ ントを正しく収集できなければ、不正確な位置合わせと不正確な骨の切除の結果を招く可能性があ ります。

「Clear Last Point (直近のポイントの消去)」または「Clear All Points (すべてのポイントの消去)」 ボタンをそれぞれ選択して、所定の骨の単一収集ポイントまたは収集したすべてのポイントを消去 することができます。

脛骨位置合わせでは、脛骨粗面に沿ったポイントの収集が求められます。位置合わせを成功させる ためには、これらのポイントが非常に重要です。不正確に収集されると、不正確さの導入につなが りかねません。これらのポイントを確実に正しく収集するため、少なくとも1mm以上の間隔を設 けてポイントを収集し、内側・外側方向で整列させて収集することをお勧めします。

画像位置合わせ後に特定の追跡済み参照アレイ(解剖トラッカー、ロボット・アーム・ベース・ア レイ)の急激な位置変更は行わないでください。こういった急激な位置変更が頻繁に起こることは ありません。ただし、行った場合、元のインプラント計画(位置/向き)が変わり、不正確な骨の 準備を招くおそれのある意図しない危険な状況を示している可能性があります。

位置合わせの検証

Mako 製品専門医/ 外科医

- 画面に表示されている大きい青色球体の1つに対応する骨上のポイントにシャープ探針(青色)の 先端を接触させます。探針の「Distance to Bone (骨までの距離)」をmm単位で表示し、骨の輪 郭の2次元 CT スライスで表示する指針がモデルの右側にあります。
- 2.「Verify(検証)」を押します。ソフトウェアにより、探針の先端と登録済み骨モデルの間の距離測 定値の精度値(設定済み外科医の優先設定により異なります)が表示されます。そのポイントの精 度値が許容範囲内である場合、音が鳴って青色のポイントが白色になり、そのポイントの骨位置合 わせが正確であることを示します。青色のポイントが赤になった場合、精度値が許容範囲を上回っ たことが分かります。6つの検証ポイントすべてで繰り返してください。

検証値を許容できない場合、ポイント精度の確認、ランドマークの再撮影、または再登録、もしく はこれらのすべてといった手順を検討します。

3. 大腿骨位置合わせを検証後、「Tibia (脛骨)」位置合わせが始まります。脛骨で先の手順を繰り返し ます。探針の「Distance to Bone (骨までの距離)」をmm単位で表示し、骨の輪郭の2次元 CT スライスで表示する指針がモデルの右側にあります。

位置合わせの検証

オペレーターが必要な位置合わせポイントのすべてを検証しない場合は、リマインダーポップアッ プ画面が表示されます。このポップアップが表示されてもユーザーは次へ進むことができます。 「Bone Preparation (骨の準備)」ページに進む前に、少なくとも1つの検証球体を検証する必要が あります。

骨位置合わせ完了後に CT ランドマーク、患者ランドマーク、またはチェックポイントを取り消す と、切除前に骨の再検証を行う必要があります。 Mako TKA アプリケーションユーザーガイド

位置合わせの結果:骨位置合わせ全体精度の尺度で、位置合わせ完了時に表示されます。位置合わせの検証中、ステータスバーに検証結果の値が表示され、検証した直近の球体の精度が示されます。 Information Box(インフォメーションボックス)に表示される全体精度値は、位置合わせの全体精度 を示します。

位置合わせ完了時に表示される「Overall Accuracy(全体精度)」数は位置合わせの全体精度を示し ますが、位置合わせの合否を決定する単一の要因ではありません。その他の尺度や計算値が考慮さ れます。

大きな球形 (メイン画面):大きな球形 (青色)は、位置合わせが検証されなければならないポイント を表します。探針が球体の中心から 6 mm 以内にある場合、球体は透明になります。

小さな球形(メイン画面):メインウィンドウに表示される小さな球形は、骨の位置合わせの間に収集 されたポイントに相当します。ソフトウェアにより算出される各ポイントから骨の表面までの登録済 みの距離は異なる色で表現されます。

球体の色	骨の表面からの推定距離
緑色	0.5 mm 未満
黄色	0.5 ~ 1.5 mm の間
赤色	1.5 mm を超える

より小さな球形の色は位置合わせの正確さについて大まかな概念を示します。例えば、赤色の球形 で覆われた骨のモデルは恐らく不正確です。しかし、小さな球形を精度の唯一の指標として使用し ないでください。位置合わせの検証は、精度の確認を目的として実施する必要があります。

骨位置合わせの検証中、目的の領域に探針を置くと、骨の表面のどの場所でも精度を確認すること ができます。アプリケーションにより、探針の先端から骨までの距離が計算され、CT View (CT ビュー)ウィンドウの上のメインウィンドウに値が表示されます。

術中計画立案

外科医の優先設定で選択された手術のワークフローに応じて、Mako (MAKOplasty) TKA アプリケー ションは次の2種類のワークフローの1つに従います:

- Measured Resection 法
- 靭帯バランシング

Measured Resection 法

Measured Resection ワークフローでは、遠位大腿骨、大腿骨後方、および近位脛骨の計画した切除を 行います。靭帯張力を直接考慮することはありませんが、後のトライアル中に評価します。

関節バランシング

本セクションに記載するツールの適用方法については、該当する Mako TKA *手術ガイドを参照して ください。*

「Joint Balancing (関節バランシング)」ページでは、ライブで下肢アライメントツールを使用でき、膝 関節の評価を円滑にします。屈曲拘縮、反張、固定内反 / 外反変形、および屈曲制限などの臨床上の問 題により、術中「Implant Planning (インプラント計画立案)」ページにおいて外科医がインプラント の計画を変更しなければならないことがあります。「メインウィンドウ」には、膝の屈曲 / 伸展角度、 内反 / 外反角度、内旋 / 外旋値が表示されます。下肢の位置合わせ以後、下肢の屈曲や伸展に従って、 モデルや旋回値はリアルタイムで連続的に更新されます。

外科医の優先設定で「Measured Resection」ワークフローが有効にされている場合のみ、「Intra-Op Planning (術中計画立案)」タブの「Joint Balancing (関節のバランシング)」ページが有効にな ります。

関節バランシング

「Joint Balancing (関節バランシング)」ページに表示されるモデルや値もしくはそのいずれかが患 者の解剖学的構造に符合しないようにみられる場合、次に進む前に骨位置合わせの精度を検証して ください。

7

内反 / 外反値が不正確であるようならば、正しい解剖学位置で「CT ランドマーク」が正しく選択さ れていることを確認してください。

インプラント計画立案(術中)

「Implant Planning(インプラント計画立案)」ページでは、「Joint Balancing(関節バランシング)」ページで実施した下肢アライメント評価に従って外科医が修正を加える最後の機会が与えられます。

外科医の優先設定で「Measured Resection」ワークフローが有効にされている場合のみ、「Intra-Op Planning (術中計画立案)」タブの「Implant Planning (インプラント計画立案)」ページが有効にな ります。

靭帯バランシング

本セクションに記載するツールの適用方法については、該当する Mako TKA *手術ガイドを参照して ください。*

「Ligament Balancing (靭帯バランシング)」ページでは、外科医は、骨の準備の前または脛骨や遠位 大腿骨切除後に屈曲および伸展時の内側および外側間隙を評価することができます。骨モデルはラ イブでの下肢張力の可視化を円滑にします。下肢の位置合わせ以後、下肢の屈曲や伸展に従って、 モデルや数値はリアルタイムで連続的に更新されます。下肢の靭帯張力評価を補助するため、間隙 値や図(白い長方形)が表示されます。 正しい靭帯張力を助けるインプラントの位置決めは、「Ligament Balancing(靭帯バランシング)」ページから行うことができます。矢印アイコンは「Implant Planning(インプラント計画立案)」ページにあるものと同じように機能します。以下に示す2種類の靭帯バランシングを使用することができます。

- **遠位 / 脛骨切除が先**: このワークフローは、脊椎用スプレッダーまたは膝テンショナーを使用し、 「Ligament Balancing (靭帯バランシング)」ページに移動して伸展間隙と屈曲間隙のバランスを調 整する前に遠位大腿骨と近位脛骨の切除を行う手法です。
- 切除前バランシング:このワークフローは、スペーサーパドル、骨刀、内反 / 外反モーメント法の いずれかを利用して骨切除を行う前に「Ligament Balancing(靭帯バランシング)」ページで計画 した間隙のバランシングを行う手法です。

「遠位 / 脛骨切除が先」ワークフローを選択すると、大腿骨インプラントの位置決めボタンのみが 表示されます。

「Ligament Balancing (靭帯バランシング)」ページでは、大腿骨および脛骨インプラントの微調整を行うことができます。

- Extension (伸展) ビュー(下肢屈曲角度は 45° 未満)
 下肢が伸展位にある場合、以下のコントロールを使用することができます。
 - 大腿骨コンポーネントの内反 / 外反角度
 - 大腿骨コンポーネントの屈曲 / 伸展角度
 - 大腿骨移動矢印
 - ・ 脛骨コンポーネントの内反 / 外反角度
 - ・ 脛骨コンポーネントの前 / 後傾角度
 - 脛骨移動矢印
- Flexion(屈曲)ビュー(下肢屈曲角度は45°以上)
 下肢が屈曲位にある場合、以下のコントロールを使用することができます。
 - 大腿骨コンポーネントの内旋 / 外旋角度
 - ・ 大腿骨コンポーネントの屈曲 / 伸展角度
 - 大腿骨移動矢印
 - 脛骨コンポーネントの内反 / 外反角度
 - 脛骨コンポーネントの前 / 後傾角度
 - 脛骨移動矢印
 - 「Pre-Resection (切除前)」ワークフローでは、大腿骨と脛骨の両コンポーネントの調 整が行えます。
 - 「Distal/Tibia Cut First (遠位 / 脛骨切除が先)」ワークフローでは、大腿骨の調整のみを 行えます。
 - 1
- 大腿骨または脛骨アレイがカメラの視野内にない場合は、インプラント計画立案のコントロールが画面から削除されます(インプラントシステムの変更またはコンポーネントのサイズ以外)。アレイがカメラから見えるようになると、インプラント計画立案のコントロールが再び表示されます。

靭帯バランシングページ

「Ligament Balancing (靭帯バランシング)」ページの機能により、内側および外側間隙が左右対称で、 屈曲および伸展時に両側の靭帯張力のバランスを確保しつつ、インプラント計画を終了することがで きます。

最終骨切除の前に靭帯バランシングを評価することができます。

メインウィンドウ

間隙をリアルタイムで表示するには、膝部大腿骨アレイと膝部脛骨アレイを使用してシステムが大 腿骨と脛骨を追跡できる必要があります。膝部大腿骨アレイと膝部脛骨アレイのいずれかが遮断さ れる場合、該当する骨モデルが「greyed (灰色)」表示になり、「Ligament Balancing (靭帯バラン シング)」ページでは切除間隙も下肢アライメントも表示されなくなります。

下肢の表示-下肢の屈曲 / 伸展や内反 / 外反を表示するリアルタイムのコロナルおよびサジタル下肢ア ライメント画像。下肢が伸展ビューにある場合、外科医が下肢アライメントを全体的に評価する際の 視覚的な支援を目的として骨モデルのコロナルビューには重ね合わされた機能軸の線が表示されます。

骨モデル - 相互に関連する大腿骨と脛骨のリアルタイム3次元骨表現。これらの骨モデルはコロナル ビューでもサジタルビューでも表示され、異なる屈曲 / 伸展、内反 / 外反、および外旋 / 内旋角度で下 肢が動くと自動的に更新されます。

間隙表示 - 内側および外側間隙のリアルタイム数値および視覚的表現。これらの間隙値は、下肢が転位されたりインプラントの位置が調整されたりすると自動的に更新されます。

計画した内反 / 外反 - インプラントの位置に基づいて計画した内反 / 外反を示します。

屈曲ポーズ - 角度が 85° ~ 95°の時に撮影されたスナップショットポーズ。

伸展ポーズ - 角度が -3°と 20°の時に撮影されたスナップショットポーズ。

コントロールパネル

インプラントシステムボタン - ユーザーがインプラントシステムを変更できるようにします。詳細に ついては、「Patient Information(患者情報)」セクションを参照してください。

インプラントのサイズ決定ボタン - 大腿骨、脛骨、およびポリ厚のプラス記号(サイズを上げる)またはマイナス記号(サイズを下げる)を選択するこれらのボタンでインプラントコンポーネントのサ イズを調整します。

ポーズ撮影ボタン - ユーザーは伸展および屈曲ポーズを撮影することができます。撮影したポーズごとに間隙値が表示されます。

取り消し-所定のコンポーネントの直前のインプラント移動を削除し、インプラント(大腿骨/脛骨)やポリの変更履歴追跡を維持します。これを終了した後か、インプラント・システム・ファミリーを変更した場合、取り消し履歴は失われます。

インプラント - アクティブなとき、すべてのインプラント・コンポーネント・モデルが 3 次元 ビューで表示されます。

切除ビュー-計画した切除領域のビューが表示され、仮想切除ビューを有効にします。アクティブなとき、スライサー・ビュー・アイコンは使用できません。

インプラントの位置決め-すべてのビューでインプラント位置決めボタンが表示されます。

骨の調製

チェックポイント

チェックポイントとは、切除を開始する前のシステム精度に必要な確認点です。指定し、事前に設定 した骨のチェックポイントやソー・ブレード・チェックポイント・ディボットにブラント探針(緑色) を置くことにより、システムは安全で正確な切除を行うことができます。

Mako リフト機構が下げられていて、Mako が下肢の上まで下がっていることを確認して ください。Mako が下肢上部まで下げられていない場合は、メインウィンドウにアイコ ンが表示されます。

Mako 位置合わせが行われた場所(つまり、立方体)と同じ場所で切除ツールチェックポイントが 収集されることを確認します。

骨の調製中に、選択した調製手順に基づいて切除ツールまたは骨が変更される場合は、必ずチェックポイントが必要です。

チェックポイントメインウィンドウ

- 現在の切除手順の骨および MICS ハンドピー スの構成を表示します。
- チェックポイント合格のために必要な手順を 示した画像を表示します。
- チェックポイント手順の完了を緑色のチェックマークまたは黄色の警告三角で示す視覚的な合図を表示します。
- チェックポイントが正確な測定内で合格で あった時点で合図音を再生します。
 - インフォメーションボックスに最低
 チェックポイント精度値を表示します。
 - ステータスバーにリアルタイムのチェックポイント精度値を表示します。

骨の調製チェックポイント

インフォメーションボックスには、緑色または黄色の領域でチェックポイント検証が合格となる最 低精度値が表示されます。低い値が算出されると、新しい値が表示されるようになります。

Accept (承認)-「Accept (承認)」を選択することにより、黄色または緑色の精度領域のチェックポイントで骨切除を続行できます。

「Accept (承認)」ボタンの選択は、上の画像に示されているとおり、「Required Surgeon Acknowledgement (必要な外科医による確認)」の承諾として処理されます。

チェックポイントの合格

外科医 / Mako 製品専門医

- 探針をディボットに対して垂直にし、ソーブレードのチェックポイント内にブラント探針(緑色) を置きます。インフォメーションボックスに最低チェックポイント精度値が表示されます。
- 2. 探針をチェックポイントディボットに対して垂直にし、骨のチェックポイント内にブラント探針を 置ききます。インフォメーションボックスに最低チェックポイント精度値が表示されます。

いずれのチェックポイント精度値も緑色の領域に入る場合

ユーザーは先に進めることができます。「Auto Check (オートチェック)」優先設定を有効にすると、 ソフトウェアが自動的に処理を進めます。「Auto Check (オートチェック)」優先設定が無効の場合、 続行するには 「Accept (承認)」を選択します。

骨チェックポイント精度値が黄色の領域に入る場合

外科医 / Mako 製品専門医

- 1. 「Bone Preparation (骨の調製)」ページで「CT View (CT ビュー)」を表示します。
- 2. 骨検証球体と同じ6領域にシャープ探針(青色)またはブラント探針(緑色)を置きます。
- 3.6箇所すべてで精度の誤差が1mm未満と表示される場合、切除続行は医師の判断に委ねます。
- 4. 1 mm を超える精度誤差が示される領域がある場合は、Bone Registration(骨レジストレーション) に進み、その骨のレジストレーションをもう一度行います。

骨チェックポイント精度値が赤色の領域に入る場合

- 1. 「Bone Registration (骨レジストレーション)」ページに進み、問題になっている骨のレジストレーション検証手順を繰り返します。
 - 検証に合格した場合、不良チェックポイントが誤差の原因である可能性があります。手順2 に進みます。
 - 検証に失敗した場合、骨アレイが問題の原因である可能性があります。特定の骨で切除がなかった場合、アレイを調べ、安定していることを確認後、選択した骨のみで「Patient Landmarks(患者ランドマーク)」手順と「Bone Registration(骨レジストレーション)」手順を繰り返します。
- Checkpoints (チェックポイント)」ページに進み、メカニカルチェックポイントが骨内で安定していることを確認し、当該骨のチェックポイントを再度取り込みます。「Bone Preparation(骨の調製)」ページに進む前に、検証球体を1つ以上再度取り込みます。

インフォメーションボックスには、3 mm 未満でチェックポイント検証が合格となる最低精度値が 表示されます。低い値が算出されると、新しい値が表示されるようになります。

ソーブレードチェックポイントが黄色の領域に入る場合

- ソーブレードが完全に着座し、ソーアタッチメント内にしっかり締められていることを確認します。
- 2. ソーアタッチメントが MICS ハンドピースに完全に着座していることを確かめます。
- 上記チェックの両方が正しいことが確かめられていれば、「Accept(承認)」を選択して続行します。

ソー・ブレード・チェックポイントが赤色の領域に入る場合

- 1. ソーブレードが完全に着座し、ソーアタッチメント内にしっかり締められていることを確認しま す。
- 2. ソーアタッチメントが MICS ハンドピースに完全に着座していることを確かめます。
- 3. RIO 位置合わせ合格以後にロボットアームベースアレイが衝突していないか、移動していないかを 調べます。
- 4. 上記チェックのすべてが正しいと確かめられている場合は、ソーブレードの別の側でチェックポイントを探ります。
- 5. 上記チェックのすべてが実行され、ソーブレードチェックポイントが依然として赤色の領域にある 場合は、「RIO Registration (RIO 位置合わせ)」ページに進み、再度 Mako 位置合わせを行います。

チェックポイント許容域:コントロールパネルに表示されるステータスバーの色は、ソフトウェアが 計算したチェックポイント精度を表します。以下の許容領域が定義されています:

許容域	骨チェックポイントの精度	ソーブレードチェックポ イントの精度
緑色	1.0 mm 以下	1.4 mm 以下
黄色	1.0 を超えて 1.5 mm 以下	1.4 を超えて 1.8 mm 以下
赤色	1.5 mm を超える	1.8 mm を超える

Bone Preparation (骨の調製ページ)のレイアウト

Mako リフト機構が下げられていて、Mako が下肢の上まで下がっていることを確認して ください。Mako が下肢上部まで下げられていない場合は、メインウィンドウにアイコ ンが表示されます。

A. メインウィンドウ

- 骨の3次元表現を表示します。
- 3 つの事前設定ビューのいずれかをクリックすると、骨の向きが変わります。
- ユーザーは骨モデルの拡大率を調節することができます。

フリーモード(ロック解除)は、そ の他のすべてのモードを無効にしま す。

切除モード(ソーオン)は、ソーの 電源が有効であることを示します。

アプローチモード(アライニング)は、 トリガーが押され、医師が有効にする電 動アライメントをロボットアームが実施 していることを示します。

回転アイコンは、ロボットアームが切除

に入れないことを示します。アイコンが

消えるまで脚を調整します。

アプローチモード(トリガーを押す)

医師に促します。

は、トリガーを長押しして、医師が有効

にする電動アライメントを開始するよう

切除モード(ソーオフ)は、ソーの 電源が無効であることを示します。

B. 骨の調製コントロールパネル

ラベルボックス - 切除手順や選択したワークフローによって変わる記述情報を表示します。

切除シーケンス - 選択されているワークフローで現在選択されている切除 手順を表示します。

前方 / 後方矢印 (<>)- ユーザーは切除手順を1つずつ変更することができます。ドロップダウンメニューを使用すると、医師の優先設定により設定できる切除手順をリストから選択することができます。

拡大境界 – 選択し、アクティブの場合は、拡大定位境界の使用が 有効です。アクティブではない場合、標準定位境界が有効です。

Bone Preparation (骨の調製) ウィンドウ

ムライサービュー - 作動している探針またはソーがある場合はリア ルタイム更新を行う CT データおよびインプラントモデルのトランスバース、サジタル、コロナル、 および 3 次元ビューを表示する「CT View (CT ビュー)」画面。

フリーモード(ロック解除)は、その他のすべてのモード(アプローチモードや切除モード)を無効 にします。また、フリーモードは MICS ハンドピースを無効化し、定位境界を解除します。アプリ ケーションのコントロールパネルにある「Free (フリー)」ボタンを押すと、切除中いつでもフリー モードに移行することができます。もう一度「Free (フリー)」ボタンを押すと、フリーモードを解除 することができます。

MICS ハンドピースの電源がオンの間にフリーモードを有効にすると、電源が切られて、ブレード 停止後にのみ定位境界が解除されます。

重度の損傷を回避するため、MICS ハンドピースを骨や定位境界に進めている間は定位境界の解除 (フリーモードを有効にするなど)は行わないでください。外科医と Mako 製品専門医(MPS)と の間の正確なやりとりが不可欠です。

モード:フリー(スタンバイ)

フリーモード(スタンバイ)の間、アプローチモードを使用することができます。切除モードは、ア プローチモードから医師が有効にする電動アライメントを介しても使用することができます。

モード:アプローチ(トリガーを押してアライニング)

アプローチモードは、ユーザーが定位境界内で切除面に MICS ハンドピースを導くのを支援します。 MICS ハンドピースのソーブレード(青色で表現)を膝の中央近くで(アプローチゾーン)動かす場 合、メインウィンドウの骨 3D モデルの上に定位境界を表現した黄色の領域が表示されます。トリガー を長押しして切除ツールを定位境界に合わせます。アライメントを行うと、定位境界内の切除面が緑 色に変わり、システムは自動的に切除モードに進みます。

アプローチモードウィンドウ

定位境界は、切除ツールが軟部組織を傷つけないようにする保護に役立ちます。ただし、患者の解 剖学的構造、インプラント計画、外科医特有の技術にはばらつきがあります。外科医には、骨切除 中に軟部組織(側副靱帯、膝蓋腱、四頭筋のメカニズム、および PCL などを含みますが、これに 限定されません)を正しく退縮させておく責任があります。

旋回変形の極端な例では(例、極端な脛骨プラトー内反)、ロボットアームがソーブレードを定位 境界に合わせられないことがあります。アライメントを行えるようにするには、レッグポジショ ナーから脛骨を外し、定位境界内側・外側軸が床と平行になるように回転する必要がある可能性が あります。切除の前に脚が安定していることを確認します。

アプローチモード(アライン)の間、ソーブレードが骨や軟部組織に衝突しそうな場合、トリガー を解除し、ロボットアームの医師が有効にする電動アライメントのすべてを中止します。ソーブ レードを膝関節から離し、すべての軟部組織が関節から退縮されていることを確認します。再びア プローチモードから切除に入ります。

拡大境界

定位境界を拡大することにより、ソーブレードが計画した切除体に接近しやすくなります。軟部組織 や神経血管構造への意図しない接触を避けるため、切除モード中は解剖学的構造の直視を維持します。

拡大境界に関する警告

定位コントロールを拡大境界に切り替える場合、骨ビューを含め、画面に決定ボックスが表示され ます。この期間中、定位コントロール(およびソーへの電力)はまだ有効です。この移行中は注意 が必要です。

Extended Boundary (拡大境界) ウィンドウ

切除モードでは、定位境界内で切除を行えます。このモードでは、MICS ハンドピースのトリガーを押 すと、MICS ハンドピースの電源がオンになります。

モード:切除

Mako (MAKOplasty) TKA アプリケーションでは、直接洗浄を行いません。洗浄が必要な場合は、 必要に応じてバルブ洗浄を適用します。

必ず2 台目の MICS ハンドピースやアタッチメントを無菌の状態で用意しておいてください。モー ターやアタッチメントが不具合をきたすと、ロボットアームが切除を完了できなくなります。 MICS ハンドピースやアタッチメントは術中に交換することができます。本マニュアルの「MICS ハンドピースへの MICS アタッチメント装着」セクションを参照してください。術中に MICS ハン ドピースを交換する場合、本マニュアルの「MICS ハンドピースの電源がオンにならない」セク ションを参照してトラブルシューティング時の提案をお読みください。

使用中、MICS ハンドピースのトリガーが「押された」位置のまま動かなくなる可能性がありま す。システムが切除モードにある間にこの状況に陥った場合、切除ツールは切除し続けますが、 アームは定位境界内にロックされます。MICS ハンドピースを未装着の状態で放置しないでくださ い。「Free (フリー)」を選択します。次に、動かなくなったトリガーを修正するために、側方から トリガーを軽く押して開放します。

定位境界への過度で強引なアプローチは、インプラント留置部位の表面を不規則にし、周辺の軟部 組織を傷つけたりする可能性があります。

ソーブレードが回転中に開創器や他の器具に接触すると、手術部位に粒状の金属が放出され、イン プラントの長期耐久性能が損なわれます。そのような状況が発生したら、その領域を洗浄してソー ブレードを取り換えてください。

振動しているソーブレードのシャフトで、切除領域内の予定していない骨や組織を誤って除去する 可能性があります。重度の損傷を回避するため、切除の間はロボットアームとソーブレードのシャ フトの方向に常に注意してください。

旋回変形の極端な例では(例、極端な脛骨プラトー内反)、ロボットアームがソーブレードを定位 境界に合わせられないことがあります。アライメントを行えるようにするには、レッグポジショ ナーから脛骨を外し、定位境界内側・外側軸が床と平行になるように回転する必要がある可能性が あります。切除の前に脚が安定していることを確認します。

アプローチモード(アライン)の間、ソーブレードが骨や軟部組織に衝突しそうな場合、トリガー を解除し、ロボットアームの医師が有効にする電動アライメントのすべてを中止します。ソーブ レードを膝関節から離し、すべての軟部組織が関節から退縮されていることを確認します。再びア プローチモードから切除に入ります。

切除モードにある間、メニュー、ナビゲーションタブ、「Back/Next(戻る / 次へ)」ボタンからの選 択はできません。

ブレードのスカイビングを最小限にするには、切除に入ったらソーブレードで慎重に刻み目を入れ ます。最初に骨に侵入したときにブレードがそれる場合、ソーブレードを外し、骨への侵入点を正 さない限り高精度の切除確保は困難になります。

精度を確保するには、特にブレードが骨と最初に接触するときにロボットアームに強い力を掛けな いでください。切除システムのハンドルに強い力を掛けると、ブレードが曲がるおそれがありま す。 切除領域は、「Main Window(メインウィンドウ)」の骨 3 次元 モデルに緑色の立体として表示されま す。この緑色の立体を切除して、手術計画の切除面と同じ面が作製されるのが理想です。切除モード の目標は、特に緑色の立体と可能な限り同じ量を取り除くことです。

MICS ハンドピースの電源がオンにならない

外科医 / Mako 製品専門医

MICS ハンドピースの電源がオンにならない場合、以下の手順に従ってください。

- 1. トリガーを押しなおします。
- 2. カッターをリセットします(「Reset Cutter (カッターのリセット)」をクリック後 10 秒間待ちます)。
- 3. ロボットアームの背後から MICS ハンドピースのケーブルを抜いて再接続します。
- 4. アプリケーションを終了し、再び表示します。
- 5. ロボットアームのソフトウェアをリセットします。
- 6. MICS ハンドピースを交換します。MICS ハンドピースのシリアル番号は自動的に Mako にアップ ロードされます。
 - 正常にアップロードされたら、骨切除に進む前に切除ツールチェックポイントを確かめます。
 - アップロードできなかった場合は、「RIO Registration (RIO 位置合わせ)」ページに戻り、ドロッ プダウンメニューからシリアル番号を選択するようユーザーに指示するエラーメッセージが表示 されます。「Continue (続ける)」を選択すると、アプリケーションは 「RIO Registration (RIO 位置合わせ)」ページに戻ります。
- 7. 「RIO Registration (RIO 位置合わせ)」を実施し、そのまま進んで 「Bone Preparation (骨の調製)」 に入ります。

可視化および定位境界

切除位置に制限を設ける定位境界は切除のガイドになります。ただし、力を加えて定位境界を超える 可能性があります。さまざまなソフトウェア機能が実行されており、このような事態の発生を防止し、 起こり得る問題を少なくしています。

ビープ音

切除モードでユーザーが定位境界に力を掛けると、システムがビープ音を発し、そのまま続けると正 しく切除できなくなる可能性のある状況であることを伝えます。ビープ音が聞こえたら、ロボット アームに力をかけるのを止めてください。

MICS ハンドピースの停止

ユーザーが定位境界に過剰な圧をかけた場合、MICS ハンドピースが自動的に電源をオフにして不正な 切除を防止します。

骨モデルの色

3次元骨モデル上の緑色の立体は計画した切除領域を表現しています。3次元骨モデル上の白色の立体 は緑色の立体の後ろに 0.75 mm 広がり、計画した切除領域が取り除かれたことの指標になります。白 色の立体内では、依然としてソーに電力が送られます。白色の立体を超えた赤色の立体は、切除が計 画よりも 0.75 mm を超えて大きかったことを表現しています。赤色の立体内ではソーに電力が送らま せん。ユーザーは、上記の視覚的および聴覚的合図に応答して赤色の立体を回避する必要があります。

赤色の表面の存在は、ユーザーが定位境界の先まで押したことを示していますが、必ずしも、許容 できない、または過度に不正な切除を表現するものではありません。

参照アレイとトラッキング

ロボットアームが正確な定位境界を与え、振動しているソーブレードの最新の位置を示すために、切 除骨の参照アレイを見えるようにする必要があります。アレイに遮断物がある場合、警告音が鳴りま す。アレイが2秒以上遮断された場合、定位境界が無効になります。

速度制限

切除中に、患者の脚または参照アレイの位置が突然変わったか、カメラスタンドに衝突した場合、速 度制限安全性表示音が鳴り、振動するソーブレードが停止します。

患者の脚がカメラに追跡され、ロボットアームが切除領域と連結している場合、意図しない脚の移動 が同様の意図しないロボットアームの移動につながります。「Velocity Limit(速度制限)」安全機能は MICS ハンドピースの無効化を始動し、定位コントロールからのロボットアーム連結を解除します。切 除中の急な位置変更は高頻度に起こるものではありませんが、意図しない、危険な状況を示す場合が あります。

CTビュー

CT View (CT ビュー)では、ユーザーはプラナ探針、シャープ探針(青色)またはブラント探針(緑 色)を使用してリアルタイムで切除の精度を調べることができます。

CT View (CT ビュー)には、コントロールパネルの「CT View (CT ビュー)」切替えボタンを選択し て「Bone Preparation (骨の調製画面)」のどこでもアクセスできます。アクティブな場合、「CT View (CT ビュー)」画面は、切除ツールまたはアクティブな探針をリアルタイムで更新して CT データおよ びインプラントモデルのトランスバース、サジタル、コロナル、および 3 次元 ビューを表示します。 フリーモード、アプローチモードまたは切除モード(ソーブレードを動作させられない)では、「CT View (CT ビュー)」をアクティブな状態で維持することができます。「CT View (CT ビュー)」を終了 するには、「CT View (CT ビュー)」ボタンを切り替えます。

CT ビュー

治療の完了

保存と終了

外科医 / Mako 製品専門医

ユーザーがワークフローの最後のページに到達すると、アプリケーションに「Patient Time Out (患者 のタイムアウト)」が表示されてメカニカルチェックポイントを取り外すよう医療従事者に通知しま す。チェックポイント・ドライバー・ツールを使用して、大腿骨および脛骨チェックポイントを取り 外します。リマインダーを確認し、「Archive and Exit (保存と終了)」ボタンを選択する前にチェック ポイントを取り外します。

以下の外科器具の個数確認を含めることを推奨します。大腿骨骨ピン2、脛骨骨ピン2、大腿骨 チェックポイント1、脛骨チェックポイント1

システムをシャットダウンする前に、大腿骨および脛骨メカニカルチェックポイントを取り外します

終了およびシャットダウン

Mako 製品専門医

ソフトウェアを終了して Mako システムをシャットダウンする方法

Mako (MAKOplasty) TKA アプリケーションソフトウェアの「Options (オプション)」メニューから「Exit (終了)」を選択するか、[Archive and Exit (保存と終了)」ページから「Archive and Exit (保存と終了)」を選択します。

MPS 計画立案ラップトップを使用している場合、選択すると「Archive and Exit(保存と終了)」が 示されます。

- 終了の決定をユーザーに確認することを要求するダイアログボックスが表示されます。[Yes (はい)]を選択すると、患者計画を終了します。ユーザーに計画終了の意思がない場合、[No (いいえ)]を選択するとダイアログボックスが閉じ、前の画面に戻ります。
- MAKOplasty TKA スタートアップメニューから「Shutdown (シャットダウン)」を選択します。画面の指示に従います。
- 4. Mako システムの正しい切断と保管に関する説明については、「Mako システムユーザーガイド (PN 210711-09)」を参照してください。

[Archive and Exit (保存と終了)」を選択すると、終了時に自動的に計画を保存します。

メカニカルチェックポイントが使用された場合、以下のダイアログボックスにすべてのチェックポ イントハードウェアを取り外すよう追加のアラームが表示されます。

タイムアウトを終了する

外科医は常に、特定の患者の治療にあたって、特定製品を使用するかどうかを決める際には、自身の専門家としての臨床判断 に委ねなければなりません。Stryker は、あらゆる特定製品の使用に関して、手術での使用前に外科医を教育するための医学 的なアドバイスや勧告を行いません。

提供されている情報は、Stryker の製品提供の幅の広さを示すことを目的としています。外科医は常に、あらゆる Stryker 製 品の使用前には使用方法に関する添付文書、製品ラベルおよび / または使用説明書を参照しなければなりません。紹介されて いる製品には、欧州医療機器規則 2017/745 または医療機器指令 93/42/EEC に準拠して CE マークがついています。製品が使 用可能かどうかは、それぞれの市場における規制、医療行為、その両方、またはどちらか一方に依るため、すべての市場で製 品が使用可能なわけではありません。お客様の地域での Stryker 使用の可否に関してご質問がある場合は、Stryker 担当者に お問合せください。

Stryker 社、Stryker 社部門、または他の関連企業は、以下の商標またはサービスマークを保有、使用しているか、あるいは申請を行っています。KINETIS、MAKOplasty、Mako、MAKO Surgical Corp.、RIO、Stryker、および VIZADISC。他の全ての商標は、それぞれの所有者または保持者のものです。

PN 210467-09 改訂 AB 04/22 Copyright © 2022 Stryker 米国にて印刷